科目:普通化學(4071)

考試日期:103年2月14日 第 4節

系所班別:應用化學系分子科學碩士班

組別:分子碩

第 / 頁,共8 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

單選題共50題,每題答對得2分,未作答或答錯不給分。請用答案卡作答。

$$c = 3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$$

$$e = 1.60 \times 10^{-19} \text{ C}$$

$$F = 9.65 \times 10^4 \text{ C} \cdot \text{mol}^{-1}$$

$$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$$

$$R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 8.206 \times 10^{-2} \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

- 1. Given reaction $2 \text{ NH}_3(g) + 3 \text{ Cl}_2(g) \rightarrow \text{N}_2(g) + 6 \text{ HCl}(g)$, you react 5.0 L of NH₃ with 5.0 L of Cl₂ measured at the same conditions in a closed container. Calculate the ratio of pressures in the container $(P_{\text{final}}/P_{\text{initial}})$.
 - (A) 0.75
- (B) 1.00
- (C) 1.33
- (D) 1.50
- (E) none of these
- 2. A sample of O₃ gas is contaminated with a gas A of unknown molar mass. The partial pressure of each gas is known to be 200. torr at 25°C. The gases are allowed to effuse through a pinhole, and it is found that gas A escapes at 5 times the rate of O₃. The molar mass of gas A is:
 - (A) 1.92 g/mol
- (B) 240 g/mol
- (C) 9.60 g/mol
- (D) 1200 g/mol
- (E) none of these
- 3. Which of the following is not an assumption of the kinetic molecular theory for a gas?
 - (A) Gases are made up of tiny particles in constant chaotic motion.
 - (B) Gas particles are very small compared to the average distance between the particles.
 - (C) Gas particles collide with the walls of their container in elastic collisions.
 - (D) The average velocity of the gas particles is directly proportional to the absolute temperature.
 - (E) All of the above are assumptions of the kinetic molecular theory.
- 4. Which statement is true of a process in which one mole of a gas is expanded from state A to state B?
 - (A) When the gas expands from state A to state B, the surroundings are doing work on the system.
 - (B) The amount of work done in the process must be the same, regardless of the path.
 - (C) It is not possible to have more than one path for a change of state.
 - (D) The final volume of the gas will depend on the path taken.
 - (E) The amount of heat released in the process will depend on the path taken.
- 5. For the reaction $H_2O(l) \rightarrow H_2O(g)$ at 298 K and 1.0 atm, ΔH is more positive than ΔE by 2.5 kJ/mol. This quantity of energy can be considered to be
 - (A) the heat flow required to maintain a constant temperature
 - (B) the work done in pushing back the atmosphere
 - (C) the difference in the H–O bond energy in $H_2O(l)$ compared to $H_2O(g)$
 - (D) the value of ΔH itself
 - (E) none of these

科目:普通化學(4071)	考試日期:10	3 年 2 月 14 日 <u>第 4</u> 節
系所班別:應用化學系分子科學碩士班	組別:分子碩	第2頁,共8頁
【不可使用計算機】*作答前請先核對試題、答案表	(試卷) 血准老語之所組別 血老	科是丕相符!!

6.	A chunk of iron at 85.7°C was added to 200.0 g of water at 15.5°C. The specific heat of iron is							
	0.449 J/g°C, and	d the specific heat o	f water is 4.18 J/g°C.	. When the temperatur	re stabilized, the			
	temperature of t	he mixture was 18.5	5°C. Assuming no he	at was lost to the surr	oundings, what was			
	the mass of iron	added?						
	(A) 513 g	(B) 65.2 g	(C) 79.6 g	(D) 83.1 g	(E) none of these			
7.	All of the follow	ving statements abo	ut the greenhouse eff	ect are true except:				
	(A) It occurs on	ly on earth.						
	(B) The molecu	les H ₂ O and CO ₂ pl	ay an important role	in retaining the atmos	phere's heat.			
	(C) Low humidi	ity allows efficient r	adiation of heat back	into space.				
	(D) The carbon	dioxide content of t	he atmosphere is qui	te stable.				
	(E) statements (A) and (D)						
8.	Consider an ator	m traveling at 1% o	f the speed of light. T	The de Broglie wavele	ength is found to be			
	4.15×10 ⁻³ pm. V	Vhich element is thi	s?		_			
	(A) He	(B) S	(C) F	(D) Cu	(E) P			
0	XX7L:-1 C41 C-	11	in (num) tunna?					
9.		llowing statements i	• •	sorbing electromagne	atio radiation			
			_	gnetic radiation is em				
	-			s its frequency increa				
		-		can go to the $n = 2$ sta				
			e appropriate frequen	_	to by emitting			
	ū			adiation are inversely	proportional to each			
	other.	,		,	rr			
	(A) II, III, IV	(B) III, V	(C) I, II, III	(D) III, IV, V	(E) I, II, IV			
10.	The small but is	mnortant energy dit	fferences hetween 3s	, $3p$, and $3d$ orbitals a	ra dua mainly ta			
10.	•	of electrons they car		, <i>sp</i> , and <i>sa</i> oronais a	ie due manny to			
	, -	al quantum number						
		erg uncertainty princ						
	(D) the penetrati	* * * *	orpro					
	(E) Hund's rule							
	(L) Hand 3 Idic							

科目:普通化學(4071)

考試日期:103年2月14日 第 4節

系所班別	•	應用化學系	分子科學碩士班
------	---	-------	---------

組別:分子碩

第3頁,共8頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

11.	Which of the following statements is true?						
	(A) The exact location of an electron can be determined if we know its energy.						
	(B) An electron in a 2s orbital can have the same n , l , and m_l quantum numbers as an electron in a 3s orbital.						
	(C) Ni has two unpaired electrons in its 3d orbitals.						
	(D) In the buildup of atoms, electrons occupy the 4f orbitals before the 6s orbitals.						
	(E) Only three quantum numbers are needed to uniquely describe an electron.						
12.	Sodium losing an electron is an process and fluorine losing an electron is an process.						
	(A) endothermic, exothermic (B) exothermic, endothermic						
	(C) endothermic, endothermic (D) exothermic, exothermic						
	(E) more information needed						
13.	Which of the following arrangements is in order of increasing size?						
	(A) $Ga^{3+} < Ca^{2+} < K^+ < Cl^- < S^{2-}$ (B) $S^{2-} < Cl^- < K^+ < Ca^{2+} < Ga^{3+}$						
	(C) $Ga^{3+} < S^{2-} < Ca^{2+} < Cl^{-} < K^{+}$ (D) $Ga^{3+} < Ca^{2+} < S^{2-} < Cl^{-} < K^{+}$						
	(E) $Ga^{3+} < Ca^{2+} < S^{2-} < K^+ < Cl^-$						
14.	Calculate the lattice energy for LiCl(s) given the following:						
1,,	sublimation energy for Li(s) +166 kJ/mol						
	$\Delta H_{\rm f}$ for Cl(g) +119 kJ/mol						
	first ionization energy of Li(g) +520. kJ/mol						
	electron affinity of $Cl(g)$ -349 kJ/mol						
	enthalpy of formation of $LiCl(s)$ -409 kJ/mol						
	(A) 47 kJ/mol (B) 171 kJ/mol (C) -580 kJ/mol (D) -865 kJ/mol (E) none of these						
	(A) 47 K3/IIIOI (B) 171 K3/IIIOI (C) -360 K3/IIIOI (D) -603 K3/IIIOI (E) IIOIIC OI IIICSC						
15.	Complete the Lewis structure for the molecule:						
15.							
	CH_3 O CH_3 — CH — C — C — C						
	CH₃—CH—C—C—N						
	This molecule has single bonds and multiple bonds						
	This molecule has single bonds and multiple bonds. (A) 4, 2 (B) 6, 3 (C) 11, 5 (D) 11, 2 (E) 13, 0						
	(L) 13, 0						

科目:	普通化學(407	1)		考試日期:103	年2月14日 第4節
系所玛	E別:應用化學	^學 系分子科學碩·	士班 組別:	分子碩	第4頁,共8頁
【不可	使用計算機】*作	F答前請先核對試題	、答案卷(試卷)與准	考證之所組別與考和	是否相符!!
				<u></u>	
1	*****	f	1	NI =0	
16.		J	l resonance structure		
	(A)	(B) 	(C)	
	<u> </u>	- Ŋ:] -	N≡N-N:		N-N=N:
	1	(E	.)		_
	(D)		all are correct		
	й=и:	= <u>ii </u>	an are correct		
	-	_			
17.	Which of the fol	lowing species has	a trigonal bipyramid	structure?	
	(A) NH ₃	(B) IF ₅	(C) I ₃ -	(D) PCl ₅	(E) none of these
		• •	, .		
18.	The hybridization	on of the central ator	n in ClF2 ⁺ is:		
	(A) sp	(B) sp^2	(C) sp^3	(D) dsp^3	(E) d^2sp^3
19.	Which of the fol	llowing has the grea	test bond strength?		
	$(A) B_2$	(B) O ₂ ⁻	(C) CN ⁻	(D) O_2^+	(E) NO ⁻
20.		monstrates paramag			
	I. The substan	nce can have both pa	aired and unpaired el	lectrons.	
		order is not a whole			
		•	g a Lewis structure.		
	IV. It must be a				(77) 11
	(A) I, II	(B) I, II, IV	(C) II, III	(D) I only	(E) all are correct
21.					(i.e., in such a way that
	•		n of the corresponding		
	(A) 0.52	(B) 0.32	(C) 0.68	(D) 0.48	(E) none of these
00	T 45 4 11 -	Carlalarita 7m2+io	ns occupy half the te	strahadral hales in a	face_centered cubic
22.		=	rmula units of ZnS i		1acc-centered edote
			(C) 3	(D) 2	(E) 1
	(A) 6	(B) 4	(0)3	(D) 2	(1.) 1
23.	Choose the com	pound with the mos	t ionic bond		
۷3.	(A) LiCl	(B) KF	(C) NaCl	(D) LiF	(E) KCl
	(21) 1101	(30) 131	(-)	\ /	() ···

	図 2	丛父 週 大 气	产 103 学 年 皮	領士班考記	式 入 学試題	
科目	:普通化學(407	1)		考試日期	:103年2月14日 第 4	ê
系所	班別:應用化學	學系分子科學	碩士班 組別]:分子碩	第 5 頁,共 8]
【不可	T使用計算機】*1	乍答前請先核對語	武題、答案卷(試卷)	與准考證之所組別		
24.	The melting poin	t of water is 0°C	C at 1 atm pressure b	ecause under these	e conditions:	_
	(A) ΔS and ΔS_{sum} sign.	for the process	$H_2O(s) \rightarrow H_2O(l)$	are different in r	nagnitude and opposite in	
	(B) ΔS and ΔS_{surr}	for the process	$H_2O(s) \rightarrow H_2O(l)$	are different in r	nagnitude and both positive).
	(C) ΔS and ΔS_{surr}	for the process	$H_2O(s) \rightarrow H_2O(l)$	are equal in mag	nitude and opposite in sign	.•
	(D) ΔS and ΔS_{surr}	for the process	$H_2O(s) \rightarrow H_2O(l)$	are equal in mag	nitude and both positive.	
	(E) None of these	e is correct.				
25.	_		ng reaction 2 NO ₂ ($(g) \to N_2O_4(g)$ is	exothermic. The reaction i	S
	(A) always spont					
	` ' '	~	ures, but not high ter	-		
	· -		tures, but not low ten	nperatures.		
	(D) never sponta	neous.				
	(E) cannot tell.					
26.	Which of the foll	owing oxides/hy	ydroxides is not an a	mphoteric compou	ınd?	
	(A) BeO	(B) B(OH) ₃	(C) Al(OH) ₃	(D) ZnO	(E) PbO	
27.	What is the ΔG° $E^{\circ}(Ag^{+}/Ag) = +0$		$Fe(s) + 2 Ag^{+}(aq) \rightarrow$ $Fe) = -0.44 V$	$Fe^{2+}(aq) + 2 Ag(s)$;) ?	
	(A) -235 kJ·mol		(B) -162 kJ·mol ⁻¹	(C)	-118 kJ·mol ⁻¹	
	(D) -69 kJ·mol ⁻¹		(E) +118 kJ·mol ⁻¹	` '		
28.	form [A] ₀ to [A] ₀	/2. How much t	ime is required for th		entration of A decreasing f A decreasing form [A] ₀ /2	to
	$[A]_0/8$ under the			(D) 40 ·	(T) (0 ·	
	(A) 7.5 min	(B) 15 min	(C) 20min	(D) 40 mi	n (E) 60 min	
29.	Which of the foll	owing systemat	ic names is correct?			
	(A) 5-methyl-3-e	thylhexane	(B	3) tetramethylamin	e	
	(C) trans-1,2-dii	odiocyclooctane	(E) 2,3-bisiodio-1-h	eptene	
	(E) 4-chloro-3-pi	opylnonane				

How many unpaired d-electrons are there in the tetrahedral complex ion [FeCl₄]²⁻ (in the ground

(D) 4

(E) 5

(C) 3

30.

state)? (A) 0

(B) 2

		,	國立交通大學	103 學年度	碩士班考試》	入學試題
	科目	:普通化學(4071)		考試日期:1	03年2月14日 第 4 節
			化學系分子科學科			
	【不可	「使用計算機】	*作答前請先核對試	題、答案卷(試卷)身	具准考證之所組別與非	号科是否相符!!
Ţ	31.	Which of the	following statements	about starch and co	ellulose is false?	
		(A) Both of t	hem belong to polysa	ccharides.		
		(B) Cellulose	is the unbranched po	lymer of sucrose.		
		(C) The high	ly branched starch is	named amylopectin		
		(D) Both of t	hem have the same m	onomers but differe	ent linkages.	
		(E) Cellulose	molecules are usuall	y held in bundles by	y hydrogen bonding.	
	32.	Which of the	following statements	about the phase dia	agram of a pure subs	tance is true?
		(A) Having t	wo or more triple poi	nts is impossible.		
		(B) No pure	substance has two dif	ferent liquid phases		
		(C) The slope	e of liquid-solid phase	boundary is alway	s > 0.	
		(D) When T	$> T_{\rm c}$, no transition bet	ween liquid and vap	oor can be observed.	
		(E) In some	case, a quadruple poir	at (4 phases in equil	ibrium) can be found	l.
	33.	Which of the	e followings gas has th	ne smallest Henry's	constant in water?	
		$(A) H_2$	(B) He	(C) N_2	(D) Ar	(E) CO
	34.	The enthalpy	of mixing two liquid	A and B is positive	and can form an aze	eotrope. That means
		(A) the azeot	trope is a minimum bo	oiling azeotrope.		
		(B) the azeot	rope is a maximum b	oiling azeotrope.		
(C) the vapor pressure can be predicted precisely by Raoult's law						

(D) both pure A and B can be obtained by fractional distillation in any case. (E) the intermolecular forces between A-B is stronger than between A-A, B-B.

(B) $trans-[CoCl_2(NH_3)_4]^+$

(E) $[Co(NCS)(NH_3)_5] \cdot Cl_2$

(C) 8.9

(B) $\exp(-18)$

37. At 300 K, $E^{\circ}(Pb^{2+}/Pb) = -0.13 \text{ V}$ and $E^{\circ}(PbSO_4/Pb) = -0.36 \text{ V}$. Then K_{sp} of $PbSO_4 = ?$ $e^{x} = \exp(x)$

What is the pH of the aqueous buffer solution that is 0.2 M NH₃ and 0.2 M NH₄Cl. The value of K_b

(E) insufficient data for determining

(D) 9.3

(C) [CrCl(OH₂)₅]·H₂O

(C) $\exp(-38)$

(E) 10.3

Which of the following complexes may have linkage isomers?

(B) 5.7

35.

36.

(A) cis-[CoCl₂(NH₃)₄]⁺

(D) Na[Fe(EDTA)]

for NH₃ is 1.8×10^{-5} .

(A) 4.7

 $(A) \exp(-8.9)$

(D) 1.9×10⁻⁷

		と週入り	字 103 学 年 度	領士班名	亨試入學	全試規
	:普通化學(4071)		<u></u>			-2月14日 第 4
	班別:應用化學系					第 7 頁,共8
【不可	「使用計算機】*作答前	う請先核對 。	試題、答案卷(試卷)與	奥准考證之所	组別與考科 是	是否相符!!
38.	Under 1800°C, CaO	+ C → X +	Y. The product X car	react with w	ater for proc	lucing an
	inflammable gas Z. V	/hat are X,	Y, and Z?			
	(A) Ca, CO, H_2		(B) Ca, CO_2 , H_2		(C) Ca_2C ,	CO, C ₂ H ₄
	(D) Ca_2C , CO_2 , C_2H_2		(E) CaC_2 , CO , C_2H	2		
39.	For the reaction mech	nanism:				
	step 1: $A + B \rightarrow X$	fast, rate	constant = $k_1 \& k_{-1}$ fo	r the reverse		
	step 2: $X + A \rightarrow C$	slow, rate	constant = k_2			
	What is the rate law?	And which	step is the rate-deter	mining step?		
	(A) $(k_1k_2)[A]^2[B]$; sto	ер 2	(B) $(k_1/k_{-1})[A][B]$;	step 1	(C) $(k_{-1}k_2/k_1)$	(1)[B]; step 2
	(D) $(k_{-1}k_2/k_1)$ [B]; step	1	(E) $(k_1k_2/k_{-1})[A]^2[B$]; step 2		
40.	Polonium is a radioac of the reasons for lun emitter and has a half	g cancer. 21	⁰ Po, the most widely	available isote	ope of polor	
	$(A)^{206}Pb$ (B) ²⁰⁶ Tl	(C) ²¹⁰ Bi	(D) 21	⁰ At	(E) ²¹⁴ Rn
41.	How many secondary	alcohols a	re there with the form	uda CsHuOH	[?	
71.	•	В) 3	(C) 6	(D) 8		(E) 9
		,	,			· /
42.	Consider the reaction $CO_{(g)}$ to form $Ni(CO)$ (A) the forward react	_{4(g)} . At 200	°C, Ni(CO) _{4(g)} decom			
	(B) K at 200°C is great	ater than K	at 30°C.			
	(C) the entropy of the					
	(D) a decrease in pres	sure favors	the forward reaction	.•		
	(E) the activation ene					
43	What the mass of bar	ium metal ((137.3 g·mol ⁻¹) can he	e produced fro	om 0 10 M a	aueous solution of

(C) 10 g

(C) H₃O⁺

(E) 31 g

(E) P(CH)₃

(D) 15 g

(D) Mg^{2+}

barium chloride by electrolysis using a current 4.0 A for 1.5 h?

(B) 0.51 g

(B) CO₂

Which of the following is not a Lewis acid?

(A) 0 g

(A) BF_3

44.

組別:分子碩

科目	:	普通	化學	(40)	71)
----	---	----	----	------	-----

50.

(A) PS

系所班別:應用化學系分子科學碩士班

考試日期:103年2月14日 第 4節

第8頁,共8頁

【不	可使用計算機』》	《作答前請先核對試題	、答案卷(試卷)與准:	考證之所組別與考科	是否相符!!			
45.	The HBr synthesis is thought to involve the following reactions:							
	I. $Br_2 \rightarrow 2 B$		· ·					
	II. $Br^{\bullet} + H_2 -$	→ HBr + H•						
	III. $H \cdot + Br_2 -$	→ HBr + Br•						
	IV. 2 Br⋅→ Br	`2						
	V. $2 \text{ H} \rightarrow \text{H}_2$							
	VI. H• + Br•→	HBr						
	The chain term	ination reactions in thi	s mechanism are read	ctions				
	(A) I, II, III	(B) II, III, IV	(C) IV, V	(D) IV, V, VI	(E) VI only			
46.	Which of the fo	ollowing compounds/ic	ons can not form a ch	elating complex with	h a metal ion?			
	(A) o-diaminob	enzene	(B) <i>p-</i> d	liaminobenzene				
	(C) diethylenet	riamine	(D) oxa	alate ion				
	(E) ethylenedia	minetetraacetate ion						
47.	Which of the fo	llowing compounds is	s chiral?					
	(A) phenol		(B) 2-b	romo-2-propanol				
	(C) cis-1,2-dich	llorocyclopentane	(D) tra	ns-1,2-dichlorocycle	pentane			
	(E) 1-ethyl-1-m	ethylcyclohexane						
48.	Silver chloride	is most soluble in						
	(A) ethanol	(B) pure water	(C) 0.1 M KCN	(D) 0.1 M KBr	(E) 0.1 M KNO ₃			
49.	Which of the fo	llowing statements ab	out catalytic reaction	s is true?				
	(A) No catalytic	reaction is zero-order	r.					
	(B) A catalyst n	nay change the reaction	n order.					
	(C) The catalyst	(C) The catalyst decreases the standard reaction enthalpy.						
	(D) Radicals are	(D) Radicals are too active, so they never act as catalysts.						

(E) A catalyst always increases the activation energy of the reverse reaction.

(B) PETE

Which of the following polymers can be used as the coating for non-stick cookware?

(C) PTFE

(D) LDPE

(E) HDPE