國立交通大學 103 學年度碩士班考試入學試題

科目:線性代數(4032)

考試日期:103年2月14日 第 4節

系所班別:應用數學系

組別:應數系甲組

第 / 頁, 共 2 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

1. (10%) Let V and W be vector spaces over the field of rational numbers. Let $T:V\to W$ be a function from V to W. Suppose T(x+y)=T(x)+T(y) for all $x,y\in V$. Prove or disprove that T is a linear transformation.

- 2. Let $\mathfrak{M}_{3\times 3}(\mathbb{R})$ be the set of all 3×3 matrices whose entries are real. Let $\delta:\mathfrak{M}_{3\times 3}(\mathbb{R})\to\mathbb{R}$ be a function satisfying the following.
 - δ is a linear function of each row when the remaining 2 rows are held fixed.
 - $\delta(A) = 0$ whenever two adjacent rows of A are identical.
 - $\delta(I_3) = 1$, where I_3 is the 3×3 identity matrix.

(a) (5%) Let
$$A = I_3$$
 and $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Prove that $\delta(A) = -\delta(B)$.

(b) (5%) Let
$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
. Find $\delta(C)$.

- 3. (10%) Let V be a finite-dimensional vector space, and let $T: V \to V$ be linear. If $\operatorname{rank}(T) = \operatorname{rank}(T^2)$, prove that $R(T) \cap N(T) = \{0\}$. Here R(T) and N(T) are, respectively, the range and the null space of T.
- 4. (10%) Let V and W be vector spaces, and let T and U be nonzero linear transformations from V into W. If $R(T) \cap R(U) = \{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathfrak{L}(V, W)$. Here $\mathfrak{L}(V, W)$ is the set of all linear transformations from V to W.
- 5. (10%) Consider the linear system Ax = b, where $A \in \mathfrak{M}_{3\times 5}(\mathbb{R})$, $x = (x_1 \ x_2 \ x_3 \ x_4 \ x_5)^T \in \mathbb{R}^5$ and $b = (b_1 \ b_2 \ b_3)^T \in \mathbb{R}^3$. Here v^T denotes the transpose of the vector v. Let the first, second and

fourth columns of
$$A$$
 be $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$, respectively. Suppose $\left\{ \begin{pmatrix} -2 \\ 5 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 0 \\ -6 \\ 1 \end{pmatrix} \right\}$

is a basis for the solution of the corresponding homogeneous system Ax = 0. Does there exist an A so that the above conditions are met? Is such A unique? Justify your answers.

國立交通大學 103 學年度碩士班考試入學試題

科目:線性代數(4032)

考試日期:103年2月14日 第 4節

系所班別:應用數學系

組別:應數系甲組

第 2 頁,共 2 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!

6. Let A be a 3×3 matrix over the field of real numbers with eight of nine entries given as below:

$$A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 6 & ? \\ 3 & 9 & -3 \end{pmatrix}.$$

Let $\lambda \neq 0$ be a fixed real number and suppose that one of the eigenvalues of A is equal to λ .

- (a) (5%) Find all the other eigenvalues of A and give logical reasons for your answer.
- (b) (5%) List all values of λ for which A is not diagonalizable and give logical reasons for your answer.
- 7. Determine whether the following sets V with $\langle -, \rangle$ are inner product spaces and give logical reasons for your answers.
 - (a) (5%) Let V = C([0,1]), the set of all continuous real-valued functions on the unit interval [0,1], and for all $f,g \in V$, define $\langle f,g \rangle = \int_0^{\frac{1}{2}} f(x)g(x)dx$.
 - (b) (5%) Let $V = \mathbb{R}^2$ and for all $x, y \in V$, define $\langle x, y \rangle = x \cdot Ay$, where $A = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$, and $v \cdot w$ denotes the dot product of v and w on \mathbb{R}^2 .
 - (c) (5%) Let V be the set of all 2×2 matrices over the field of real numbers and for all $A, B \in V$, define $(A, B) = \operatorname{trace}(A + B)$, where $\operatorname{trace}(C)$ denotes the trace of a matrix C.
 - (d) (5%) Let V be the set of all real-valued polynomials with real coefficients, and for $p, q \in V$, define $\langle p, q \rangle = \int_0^1 p'(t)q(t)dt$, where r'(t) denotes the derivative of a function r at t.
- 8. Let V be a finite-dimensional inner product space with $\langle -, \rangle$ over the field of complex numbers. Fix two vectors y, z in V, define a linear map $T: V \to V$ by $T(x) = \langle x, y \rangle z$ for $x \in V$.
 - (a) (5%) Prove that T is linear and that there exists a unique linear map $T^*: V \to V$ such that $\langle u, T^*w \rangle = \langle Tu, w \rangle$ for all $u, w \in V$.
 - (b) (5%) Find an explicit expression for T^* and give logical reasons for your answer.
- 9. (10%) Let A be a 3×3 matrix over the field of complex numbers for which A^3 is the zero matrix, but A^2 is not the zero matrix. Find the Jordan canonical form of A and give logical reasons for your answer.