國立交通大學 103 學年度碩士班考試入學試題

科目:高等微積分(4031)

考試日期:103年2月14日 第 3 節

系所班別:應用數學系

組別:應數系甲組

第 1 頁,共 / 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 1. Decide which of the following statements are true and which are false. Prove the true ones and provide counterexamples for the false ones.
 - (a) (6 points) Let F_k be a sequence of bounded nonempty sets in \mathbb{R}^n such that $F_{k+1} \subseteq F_k$ for all $k = 1, 2, \ldots$ Then $\bigcap_{k=1}^{\infty} F_k \neq \emptyset$.
 - (b) (6 points) Let $f:(a,b)\to\mathbb{R}$ be one-to-one. If $f'(x)\geq 0$ for all $x\in(a,b)$, then f^{-1} is differentiable in f((a,b)).
 - (c) (6 points) Let $a_k \in \mathbb{R}$ and suppose that $\limsup_{k\to\infty} |a_k|^{1/k} < 1$, then $\sum_{k=1}^{\infty} a_k$ converges absolutely.
 - (d) (6 points) Suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable, and that there is a K > 0 such that

$$||f(x) - f(y)|| \ge K||x - y||$$

for all $x, y \in \mathbb{R}^n$. Then $\det(Df(x)) \neq 0$ for all $x \in \mathbb{R}^n$.

- 2. (a) (8 points) Show that if f is continuous on [a, b], then f is integrable on [a, b].
 - (b) (8 points) Suppose that f is integrable on [0, 1]. Show that

$$\lim_{n\to\infty} \int_0^1 x^n f(x) dx = 0.$$

- 3. (12 points) Find $\lim_{n\to\infty} \frac{1}{n^2} \sum_{j=1}^n \sum_{k=1}^{n^2} \frac{1}{\sqrt{n^2 + nj + k}}$. Justify your computation.
- 4. Suppose that $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{x}{|y|\sqrt{x^2+y^2}} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$
 - (a) (14 points) Compute the directional derivatives of f at (0,0), where they exist. Justify your computation.
 - (b) (12 points) Is f differentiable at (0,0)? Justify your answer.
- 5. (10 points) Let f_n be integrable on [0,1] and $f_n \to f$ uniformly on [0,1]. Show that if $\{b_n\}_{n=1}^{\infty}$ is increasing and converges to 1, then

$$\lim_{n\to\infty}\int_0^{b_n}f_n(x)dx=\int_0^1f(x)dx.$$

6. (12 points) Find the positive oriented simple closed smooth curve C on the plane \mathbb{R}^2 for which the line integral $\int_C (y^3 - y) dx - 2x^3 dy$ is a maximum. Justify your assertion.