國立中正大學101學年度碩士班招生考試試題

系所別:數學系應用數學

第2節

第/頁,共2頁

科目:線性代數

1. [20 points] An $n \times n$ matrix A is Hermitian if $A = A^*$, where A^* is the conjugate transpose of A. It is normal if $A^*A = AA^*$ and unitary if $AA^* = I_n$, where I_n is the identity matrix. It is nilpotent if $A^k = 0$, for some $k \ge 1$.

Using the above definitions, give a prove for the following statements if they are true or give a counterexample if they are wrong.

- (a) If A is Hermitian, then all eigenvalues of A are real.
- (b) If A is an invertible matrix, then $(A^*)^{-1} = (A^{-1})^*$.
- (c) If A is both Hermitian and unitary, then it is nilpotent.
- (d) If A and B are Hermitian, then AB is Hermitian.
- 2. [15 points] Given any two vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)^{\top}$ in \mathbb{C}^n , let $\langle \cdot, \cdot \rangle$ be the standard inner product on \mathbb{C}^n such that

$$<\mathbf{x},\mathbf{y}> = \bar{x}_1y_1 + \bar{x}_2y_2 + \dots + \bar{x}_ny_n$$

(a) If A is Hermitian and λ is an eigenvalue of A with eigenspace

$$E_{\lambda} = \left\{ \mathbf{x} \in \mathbb{C}^n \middle| A\mathbf{x} = \lambda \mathbf{x} \right\},\,$$

define

$$E_{\lambda}^{\perp} = \{ \mathbf{y} \in \mathbb{C}^n | \langle \mathbf{x}, \mathbf{y} \rangle = 0, \forall \mathbf{x} \in E_{\lambda} \}.$$

Prove that E_{λ}^{\perp} is an invariant subspace of A, that is, $A\mathbf{y} \in E_{\lambda}^{\perp}$ for all $\mathbf{y} \in E_{\lambda}^{\perp}$.

- (b) Prove that if A is Hermitian, then A is diagonalizable.
- (c) Prove that if A is Hermitian and $A iI_n$ is invertible, then

$$B = (A - iI_n)^{-1}(A + iI_n)$$

is unitary. Here $i = \sqrt{-1}$.

3. [15 points] Let A be a 3×2 matrix and B be a 2×3 matrix such that

$$AB = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{array} \right]$$

- (a) Find the rank of A and the rank of B.
- (b) Prove that there exists a 2×3 matrix C such that $CA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

國立中正大學101學年度碩士班招生考試試題

系所別:數學系應用數學

第 2 節

第2頁,共2頁

科目:線性代數

- 4. [20 points] Let P_2 be the set of all polynomials with real coefficients of degree less than or equal to two. Define a transformation $T: P_2 \to P_2$ as T(f(x)) = xf'(x).
 - (a) Is T a linear transformation?
 - (b) Find the matrix of T with respect to the standard basis 1, x, x^2 of P_2 .
 - (c) Find the dimension of the kernel of T.
 - (d) Find all the eigenfunctions of transformation T, i.e., the function f(x) such that $T(f(x)) = \lambda f(x)$ for some scalar λ .
- 5. [15 points] For each $n \times n$ complex matrix $A = (a_{ij})$, define the notation $tr(A) = a_{11} + a_{22} + \ldots + a_{nn}$. Let S be set denoted by

$$S = \{A \in \mathbb{C}^{n \times n} | A^m = I_n, \text{ for some positive integer } m\}.$$

- (a) Prove that $|tr(A)| \le n$ for any $A \in S$.
- (b) Find the subset $\{A \in S | | trA | = n \}$.

6. [15 points] Let
$$A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$
.

- (a) Find the minimal polynomial of A.
- (b) Find A^n , where n is a positive integer.
- (c) Evaluate $\lim_{n\to\infty} \operatorname{tr}(A^n)$.