國立交通大學 103 學年度碩士班考試入學試題

科目:工程數學(3091)

考試日期:103年2月15日 第1節

系所班別:土木工程學系

組別:土木系丙組一般生、

第 | 頁,共 | 頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考料是否相符!

1. (20%) Find a complete solution of the linear differential system

$$\frac{dx}{dt} + 2x + \frac{dy}{dt} + 6y = 2e^t$$

$$2\frac{dx}{dt} + 3x + 3\frac{dy}{dt} + 8y = -1$$

2. (15%) Find the value of the surface integration

$$I = \iint_{S} (x^{3} dydz + x^{2}ydzdx + x^{2}zdxdy)$$

where S is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ ($0 \le z \le b$) and the circular disks z = 0 and z = b ($x^2 + y^2 = a^2$).

- 3. (15%) What is the directional derivative of the function $\varphi(x, y, z) = xy2 + yz3$ at point (2, -1, 1) in the direction of the vector $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$?
- 4. (15%) Given a dynamic system equation mu''(t) + cu'(t) + ku(t) = p(t), $t \ge 0$ with initial conditions u(0) = u'(0) = 0, where $m \cdot c$ and k represent respectively the mass, damping and stiffness of the system. Convert the system equation into frequency domain by Fourier transform and find the transfer function $H(\omega) = \frac{\hat{u}(\omega)}{\hat{p}(\omega)}$ where $\hat{u}(\omega)$ is the Fourier transform of u(t) and $\hat{p}(\omega)$ is the Fourier transform of p(t).
- 5. (20%) A one-dimensional heat equation is given by $u_t = c^2 u_{xx}$, $0 \le x \le 10$, $0 \le t < \infty$. Please find the solution with non-homogeneous boundary conditions u(0,t) = 0, u(10,t) = 20 and an initial condition $u(x,0) = \sin 3\pi x/10$

(NOTE:
$$b_n = \frac{2}{10} \int_0^{10} x \sin \frac{n\pi x}{10} dx = \frac{-20 \cos n\pi}{n\pi}$$
)

6. (15%) Find the Maclaurin series of $f(z) = \tan^{-1}(z)$. (NOTE: if $f(z) = \tan^{-1}(z)$, then $f' = 1/(1+z^2)$)