東吳大學 103 學年度碩士班研究生招生考試試題

第1頁,共1頁

系級	數學系碩士班A組	考試 時間	100 分鐘
科目	高等微積分	本科總分	100 分

- 1. (20 分) In each case, find a function satisfying the given condition.
 - (a) $f'(x^2) = x$ for x > 0, f(1) = 1.

(b)
$$f'(\ln x) = \begin{cases} 1 & 0 < x \le 1, \\ x & x > 1, \end{cases}$$
 $f(0)=0$

2.
$$(20 \ \%)$$
 Let $f(x, y) = \frac{xy^2}{x^2 + y^4}, x \neq 0, f(0, y) = 0.$

- (a) Compute the directional derivative of f at (0,0) in a given direction $\vec{u} = (u_1, u_2), \vec{u}$ is a unit vector.
- (b) Is f differentiable at (0, 0)? (You should give reason for your answer)
- 3. $(20 \, \text{?})$ Let $f(x) = \frac{1}{1-x}$, $x \ne 1$. Let S(x) be the Taylor series of f(x) centered at x = 0 and $S_n(x)$ be the nth partial sum of S(x).
 - (a) $S(x) = ? E(x) = f(x) S_n(x) = ?$
 - (b) Describe the region such that $S_n(x)$ converges uniformly to S(x). (you should give reason for your answer)
- 4. (20 \Re) Find the points (x, y) and the directions for which the directional derivative of $f(x, y) = 3x^2 + y^2$ has its largest value, if f(x, y) is restricted to be on the circle $x^2 + y^2 = 1$.

5.
$$(20 \ \text{?})$$
 Let $\Gamma(s) = \int_{0^+}^{\infty} t^{s-1} e^{-t} dt$.

- (a) Prove that the domain of $\Gamma(s)$ is s > 0.
- (b) Prove that $\Gamma(n+1) = n!$ for every positive number n.