國立臺灣師範大學 103 學年度碩士班招生考試試題

科目:電子學 適用系所:電機工程學系

注意:1.本試題共3頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. (10 points) An op amp with a finite open-loop gain A is used in the circuit of Fig. 1, derive the expressions for the input resistance R_i and the transresistance $R_m = v_o/i_i$.

2. (10 points) For all NMOS devices in the circuit of Fig. 2, $V_{tn} = 0.5$ V, $\lambda = \gamma = 0$, $L = 1 \mu m$, and $\mu_n C_{ox} = 50 \mu A/V^2$. If Q_1 and Q_3 are made to have $W = 1 \mu m$, and Q_2 and Q_4 are made to have $W = 10 \mu m$, find V_2 and I_{D2} .

國立臺灣師範大學 103 學年度碩士班招生考試試題

- 3. (20 points) The Widlar current source, as shown in Fig. 3, is used to generate an output current $I_O = 10 \,\mu\text{A}$. Assume that V_{BE} is 0.7 V at a current of 1 mA, and $V_T = 25 \,\text{mV}$. The transistors Q_1 and Q_2 are matched, and the effect of finite β is neglected.
 - (a) If $I_{REF} = 1$ mA, determine the values of the resistors R_1 and R_2 . Some values of ln function are given in following hint.
 - (b) If $R_2 = 0 \Omega$, find V_{BE1} and new value of the resistor R_1 for the same output current of 10 μ A.

[Hint: ln(0.01) = -4.61, ln(0.1) = -2.3, ln(10) = 2.3, ln(100) = 4.61, ln(1000) = 6.91]

Fig. 3

- 4. (20 points) The MOSFETs in the circuit of Fig. 4 are matched, having $k'_n(W/L)_1 = k'_p(W/L)_2 = 1 \text{ mA/V}^2$ and $V_{tn} = |V_{tp}| = 0.5 \text{ V}$.
 - (a) Find the drain currents I_{D1} and I_{D2} ?
 - (b) For $r_0 = \infty$, what is the voltage gain of the amplifier from G to D?
 - (c) For finite r_o ($|V_A| = 20$ V), what is the voltage gain from G to D? And, find the input resistance R_{in} at G.

國立臺灣師範大學 103 學年度碩士班招生考試試題

- 5. (20 points) The transistor in the circuit of Fig. 5 has β = 99, V_T = 25 mV, and V_{BE} = 0.7 V.
 - (a) Find the dc collector current I_C and the dc voltage V_C at the collector.
 - (b) Draw the small-signal equivalent circuit of the amplifier, and analyze the resulting circuit to determine the voltage gain v_o/v_i .

- 6. (20 points) Consider the circuit of Fig. 6, $I = 200 \mu A$, $V_{OV} = 0.25 \text{ V}$, and $C_{gs} = C_{gd} = 1 \text{ pF}$.
 - (a) Find the dc gain v_o/v_{sig} .
 - (b) Calculate two high-frequency poles, f_{p1} and f_{p2} , and write an estimate equation of f_H in terms of f_{p1} and f_{p2} .

Fig. 6

