國立臺灣師範大學 103 學年度碩士班招生考試試題

科目:工程數學(僅含微分方程及線性代數) 適用系所:電機工程學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. (10分) Find the general solution of y' + y = x.

2.
$$(10\frac{1}{2})$$
 $y''' - 9y'' + 27y' - 27y = 54\sin(3x)$, $y(0) = 3.5$, $y'(0) = 13.5$, $y''(0) = 38.5$. Find $y = ?$

- 3. (10/ \Rightarrow) Find the general solution of $y'' 5y' + 6y = -3\sin(2x)$.
- 4. (10%) Find the current in the RLC circuit in Fig. 1, where L = 0.1 H, $R = 20 \Omega$, $C = 2 \cdot 10^{-4} \text{ F}$, and $E(t)=110\sin(415t)$ volts. Assume zero initial current and capacity charge.

Fig. 1

5. (10分) Find x(t) and y(t) of the following defferential equations:

$$\begin{cases} 2\frac{dx}{dt} - x + \frac{dy}{dt} + 4y = 1\\ \frac{dx}{dt} - \frac{dy}{dt} = t - 1 \end{cases}$$

國立臺灣師範大學 103 學年度碩士班招生考試試題

- 6. (10 \Re) Let S be the subspace of R^4 spanned by <2, 0, 2, 0> and < 0, 0, 4, 2>. Find the vector in S closest to <-2, 2, -6, 6>.
- 7. (10 分) Suppose A is an orthogonal matrix. Is it true that $|A| = \pm 1$? Justify your answer.
- 8. Determine whether each of the following statements is true or false. Justify your answer.
 - (a) The set $W = \{(x, y, z) \in \mathbb{R}^3 : x + 2y z = 2\}$ is a subspace of \mathbb{R}^3 . (5 分)
 - (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a function defined by T(x, y) = (x + 2, y). The function T is a linear transformation. (5 $\frac{1}{2}$)
 - (c) Let V be the space spanned by $u_1 = 2(3-x)^2$, $u_2 = 2x^2 12x$, and $u_3 = 12$. $W = \{u_1, u_2, u_3\}$ is a basis for V. (5 %)
 - (d) Suppose λ is an eigenvalue of the matrix A with eigenvector V. Then, λ^k is an eigenvalue of A^k with eigenvector V where k is a positive integer. (5 \mathcal{H})
- 9. $(10 \ \%)$ Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -2x + y - z \\ x - 2y - z \\ -x - y - 2z \end{bmatrix}$$

Find a basis for R^3 relative to which the matrix for T is diagonal.