國立臺灣師範大學 103 學年度碩士班招生考試試題

科目:線性代數與代數 適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. (6分) Let $A \in M_{n \times n}(\mathbb{R})$ be a given $n \times n$ matrix (with coefficients in \mathbb{R}). Prove or disprove that there exist invertible matrices $P, Q \in M_{n \times n}(\mathbb{R})$ such that PAQ is a diagonal matrix.

- 2. Let V and W be finite dimensional vector spaces over \mathbb{R} .
 - (1) (6 \Re) Let $T: V \to W$ be a linear transformation. Show that if dim $V < \dim W$ then T can not be onto; if dim $V > \dim W$ then T can not be one to one.
 - (2) (10 分) Recall that V and W are called isomorphic if there exists a one-to-one and onto linear transformation from V to W. Show that V and W are isomorphic if and only if $\dim V = \dim W$,

where dim V denotes the dimension of the vector space V over \mathbb{R} .

3. (8 分) Let $b_1, \ldots, b_4 \in \mathbb{R}$ and consider the following system of linear equations:

$$2x_2 + 4x_3 + 2x_4 + 2x_5 = b_1$$

$$4x_1 + 4x_2 + 4x_3 + 8x_4 = b_2$$

$$8x_1 + 2x_2 + 10x_4 + 2x_5 = b_3$$

$$6x_1 + 3x_2 + 2x_3 + 9x_4 + x_5 = b_4$$

Let V be the subset of tuple $(b_1, b_2, b_3, b_4) \in \mathbb{R}^4$ such that the above equation is solvable. Show that V is a subspace of \mathbb{R}^4 and compute its dimension.

4. (10 分) Let W be the subspace of \mathbb{R}^5 defined by the following homogenous equations:

$$2x_1 - 2x_2 - x_3 + 6x_4 - 2x_5 = 0$$
$$x_1 - x_2 + x_3 + 2x_4 - x_5 = 0$$
$$3x_3 - 2x_4 = 0$$

The orthogonal projection of $\mathbf{v} \in \mathbb{R}^5$ on W is the vector $\mathbf{u} \in W$ such that $\mathbf{v} - \mathbf{u} \in W^{\perp}$ (the orthogonal complement of W). Show that \mathbf{u} depends uniquely on \mathbf{v} . Denote the vector \mathbf{u} by $\mathbf{Proj}_W(\mathbf{v})$. Compute $\mathbf{Proj}_W(\mathbf{v})$ for $\mathbf{v} = (23, -48, 0, 0, -32)$.

5. (10 分) Let $n \geq 2$ be an integer and let T be the linear operator on \mathbb{R}^n such that

$$T(\mathbf{e}_i) = \mathbf{e}_{i+1}$$
 for $i = 1, \dots, n-1$ and $T(\mathbf{e}_n) = \mathbf{e}_1$,

where $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is the standard basis for \mathbb{R}^n . Show that 1 is an eigenvalue of T. Is T diagonalizable? You need to explain your answers.

(下頁尚有試題)

國立臺灣師範大學 103 學年度碩士班招生考試試題

- - (1) If $9 \nmid n$, then G has no subgroup of order 6.
 - (2) If $3 \mid n$, then G contains an element of order 3.
 - (3) If $4 \mid n$, then G contains a subgroup of order 4.
 - (4) If $6 \mid n$, then G contains a subgroup of order 6.
 - (5) If $4 \mid n$ and G is abelian, then G contains an element of order 4.
 - (6) If $6 \mid n$ and G is abelian, then G contains an element of order 6.
- 7. Let H be a subgroup of a group G.
 - (1) (3 分) Give a definition for H being a normal subgroup of G.
 - (2) (5 分) Prove that the alternating group A_5 is a normal subgroup of the symmetric group S_5 .
- 8. (6 分) Let G be a group of order 39. Prove that G is not simple.
- 9. Consider the map $\phi: \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(k) = 2k$ for all $k \in \mathbb{Z}$.
 - (1) (4 分) Is ϕ a group homomorphism? Prove your answer.
 - (2) (4 分) Is ϕ a ring homomorphism? Prove your answer.
- 10. (6 \Re) Prove that the polynomial $x^6 + x^3 + 1 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} .
- 11. (7 \mathcal{G}) Consider the polynomial $f(x) = x^4 + x^2 + 1$ in $\mathbb{Z}_2[x]$ and let $I = \langle f(x) \rangle$ be the principal ideal generated by f(x) in $\mathbb{Z}_2[x]$. Is I a maximal ideal? Explain your answer.
- 12. (3 分) Find a maximal ideal in the field \mathbb{Q} . No explanation is needed for your answer.

(試題結束)