國立臺灣師範大學 103 學年度碩士班招生考試試題

科目:高等微積分

適用系所:數學系

注意: 1. 本試題共2頁,請依序在答案卷上作答,並標明題號,不必抄題。

2. 答案必須寫在指定作答區內,否則不予計分。

1. (10分)

- (a) Prove that if $f:[a,b] \to \mathbb{R}$ is continuous and $f(a) < \lambda < f(b)$, then there exists a point $\hat{x} \in (a,b)$ such that $f(\hat{x}) = \lambda$.
- (b) Prove that if $f:[a,b]\to\mathbb{R}$ is continuous and $[a,b]\subset f([a,b])$, then there exists a point $u\in[a,b]$ such that f(u)=u.
- 2. (10 分) Prove that every compact metric space is a complete metric space, but the converse is not true.
- 3. (10 分) Let $\{K_{\alpha} \mid \alpha \in \Lambda\}$ be a family of closed subsets of a metric space X. If $\bigcap_{\alpha \in \mathscr{B}} K_{\alpha} \neq \varnothing$ for each finite subset $\mathscr{B} \subset \Lambda$, and there exists an $\alpha_0 \in \Lambda$ such that K_{α_0} is compact, then $\bigcap_{\alpha \in \Lambda} K_{\alpha} \neq \varnothing$.

4. (10 分)

- (a) Let $\{s_n\}$ be a sequence of positive real numbers. Prove that if $\lim_{n\to\infty}\frac{s_{n+1}}{s_n}=s$ then $\lim_{n\to\infty}\sqrt[n]{s_n}=s$.
- (b) Evaluate $\lim_{n\to\infty} \sqrt[n]{\frac{n^n}{n!}}$.

5. (10分)

- (a) Let $\{f_n\}$ be a sequence of real-valued continuous functions on a metric space (X,d). Suppose that $\{f_n\}$ converges uniformly to the function $f: X \to \mathbb{R}$. Prove that f is continuous on X.
- (b) Let

$$g(x) = \sum_{n=0}^{\infty} \frac{\sin nx + \cos nx}{n^2}, \quad x \in \mathbb{R}.$$

Is g continuous on \mathbb{R} ? Explain your reason.

(背面尚有試題)

- 6. (10分)
 - (a) Let $f:[a,b]\to\mathbb{R}$ be continuous and f(c)>0 at some point $c\in[a,b]$. Show that the definite integral $\int_a^b f(x) \, \mathrm{d}x>0$.
 - (b) Let $g:[a,b]\to\mathbb{R}$ be a function such that g(x)=5566 except at finitely many points c_1,c_2,\ldots,c_n . Show that g is Riemann integrable on [a,b].
- 7. (10 $\hat{\sigma}$) Let $f,g:\mathbb{R}^2\to\mathbb{R}$ be continuously differentiable and suppose that $\frac{\partial g}{\partial x}=\frac{\partial f}{\partial y}$. Define

$$H(x,y) = \int_0^x f(t,0) dt + \int_0^y g(x,t) dt, \qquad \forall (x,y) \in \mathbb{R}^2.$$

Compute $\frac{\partial H}{\partial x}$ and $\frac{\partial H}{\partial y}$.

- 8. (10分)
 - (a) Let a > 0. Evaluate the integral: $\int_0^a \int_x^a \sqrt{x^2 + y^2} \, dy \, dx$.
 - (b) Given $\int_0^1 (1-x)f(x) dx = 4$, find $\int_0^1 \int_0^x f(x-y) dy dx$.
- 9. (10 \Re) Let I = (a,b) be an open interval, and a function $f: I \to \mathbb{R}$ be differentiable at a point $c \in I$. Show that for every $\varepsilon > 0$, there is a $\delta > 0$ such that whenever $a < x \le c \le y < b$ and $0 < |x y| < \delta$, we have

$$\left| \frac{f(x) - f(y)}{x - y} - f'(c) \right| < \varepsilon.$$

- 10. (10 分) For each positive integer $n \in \mathbb{N}$, let r_n be the unique positive real number satisfying $r_n + r_n^3 = n$.
 - (a) Show that $\{(\sqrt[3]{n}-r_n)\}_{n\in\mathbb{N}}$ is a decreasing sequence.
 - (b) Find the limit: $\lim_{n\to\infty} (\sqrt[3]{n} r_n)$.

(試題結束)