國立交通大學 97 學年度碩士班考試入學試題

目:線性代數與機率(2041)

一般、在耳板

考試日期:97年3月8日第1節

所班別:電信工程學系

組別:電信系甲組

第 月, 共 3 頁

作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

1. Let
$$A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 2 & 6 \\ 3 & 7 & 9 \end{bmatrix}$$
. Is the matrix A non-singular? Justify your answer.

If exists, find A^{-1} and express A as a product of elementary row matrices. (5%)

2. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 be a matrix whose elements are non-negative and

satisfy
$$a + c = 1 = b + d$$
. Also let $P = \begin{bmatrix} b & 1 \\ c & -1 \end{bmatrix}$.

Prove that if $A \neq I_2$ then

(a) P is non-singular and calculate $P^{-1}AP$, (4%)

(b)
$$A^n \to \frac{1}{b+c} \begin{bmatrix} b & b \\ c & c \end{bmatrix}$$
 as $n \to \infty$, if $A \neq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. (4%)

- 3. (a) Prove that if A and B are two matrices with m rows, and $N(A^T) \subset N(B^T)$, then $R(B) \subset R(A)$. (4%)
 - (b) Let ν be a subspace. Show that $(\nu^{\perp})^{\perp} = \nu$. (4%)

4. Consider the vectors

$$\mathbf{u}_1 = (0, 1, 0, 1, 0), \, \mathbf{u}_2 = (1, 0, 0, 0, 0), \, \mathbf{u}_3 = (1, 0, 1, 0, 1),$$

 $\mathbf{w}_1 = (1, 1, 0, 0, 0), \, \mathbf{w}_2 = (1, 2, 0, 1, 0), \, \text{and } \mathbf{w}_3 = (1, 1, 1, 0, 1).$

Let U be the subspace of \mathbb{R}^5 spanned by \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 and W be the subspace spanned by \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 .

- (i) Select bases for U and W from \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 and \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 , respectively. (1%)
- (ii) What are the dimensions of U and W? (1%)
- (iii) Determine $U \cap W$. (1%)
- (iv) Find a basis of $U \cap W$. (1%)
- (v) Extend the basis from (iv) to bases of U and W in such a way that you will get a basis of $U+W=\mathrm{span}(U\cup W)$ as well. What is the dimension of U+W? (1%)

國立交通大學97學年度碩士班考試入學試題

:線性代數與機率(2041)

考試日期:97年3月8日第1節

所班別:電信工程學系 組別:電信系甲組

第2頁,共3頁

作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 5. In \mathbb{R}^3 , let g be a line through the origin and E be a plane through the origin such that g is not in E. Determine (geometrically) the eigenvalues and eigenspaces of the following linear maps:
 - (i) reflection in the plane E. (1%)
 - (ii) reflection in the origin. (1%)
 - (iii) parallel projection in the direction of g onto E. (1%)
 - (iv) rotation about g through $\frac{\pi}{2}$ followed by rescaling in the direction of g with factor 6. (1%)
 - (v) Which of these maps admit a basis of eigenvectors? (1%)
- 6. Write down matrices $A_i \in \mathbb{R}^{(4,4)}$ in Jordan normal form with the following properties:
 - (i) A_1 has eigenvalues 2 and 4, with 2 having algebraic multiplicity 3 and geometric multiplicity 1. (1%)
 - (ii) A_2 has the eigenvalue 5 with algebraic multiplicity 4 and geometric multiplicity 3. (1%)
 - (iii) A_3 has the eigenvalue 7 with algebraic multiplicity 2 and geometric multiplicity 2 and the eigenvalue -3 with algebraic multiplicity 2 and geometric multiplicity 1. (1%)
 - (iv) The matrices A_4 and A_5 both have the eigenvalue 1 with algebraic multiplicity 4 and geometric multiplicity 2 and have no other eigenvalues. Furthermore, A_4 and A_5 are not similar. (2%)
- '. Consider the matrix Q = |
 - (a) Is this matrix positive definite, negative definite, or indefinite? (1%)
 - (b) Is this matrix positive definite, negative definite, or indefinite on the subspace $M = \{x : x_1 + x_2 + x_3 = 0\}? \quad (3\%)$
 - (c) Consider the quadratic form $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 5x_3^2 + 2\xi x_1 x_2 2x_1 x_3 + 4x_2 x_3$. Find the values of the parameter ξ for which this quadratic form is positive definite. (4%)

國立交通大學97學年度碩士班考試入學試題

:線性代數與機率(2041)

考試日期:97年3月8日第1節

系所班別:電信工程學系 組別:電信系甲組

第 3 頁, 共 3 頁

*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 8. Find an orthogonal matrix C such that the matrix $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ is transformed into
 - a diagonal matrix by $C^{-1}AC = C^{t}AC$. Which property of A guarantees that you can find such a C and the corresponding diagonal matrix? (6%)
- 9. Let X and Y be independent random variables with exponential probability density function with parameter, λ . (8%)
 - (1) What is the cumulate density function of Z=X+Y?
 - (2) What is the conditional probability density function $f_{xxxx}(x)$?
- 10. Find the probability that among 10,000 random digits, the digit 7 appears not more than 971 times. (please give your answer in terms of $\Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-x^2/2} dx$). (5%)
- 11. Let X and Y be two random variables with positive variances.
 - (1) Let X_L be the linear least squares estimator of X based on Y. Show that

$$E[(X - \hat{X}_L)Y] = 0. (5\%)$$

(2) Let \hat{X} be the Bayesian estimator, $\hat{X} = E[X|Y]$.

Show that for any function h, $E[(X - \hat{X})h(Y)] = 0. (5\%)$

- (3) Is it true that the estimation error X E[X|Y] is independent of Y? (3%)
- The number of failures of a computer network is assumed to possess Poisson distribution. The mean time to failure of the network is 3 months. What is the probability that the network will not fail within two years? Derive your exact answer from two possible distributions (Hint: define two random variables first). (10%)
- 13. (1) Assume X is normally distributed with parameters μ and σ , please find the moment-generating function of X. (7%)
 - (2) Let X and Y are jointly normal, please find the variance of Z = X + Y, and prove that X and Y are uncorrelated then they are independent. (7%)