國立中山大學 101 學年度碩士暨碩士專班招生考試試題

科目:動力學【機電系碩士班丁組】

題號:4095 共1頁第1頁

- (1) Show the natural frequency ω_n of a 1-DOF system with mass m and stiffness k. (10%)
- (2) Determine the period of a harmonic motion with an amplitude of 0.05 m and a frequency of 10 Hz. (10%)
- (3) The maximum amplitude and the maximum acceleration of the foundation of a centrifugal pump were found to be $x_{\text{max}} = 0.25 \, \text{mm}$ and $\ddot{x}_{\text{max}} = 0.4 \, \text{g}$ for its harmonic oscillation. Determine the operating speed of the pump (rpm). (10%)
- (4) An automobile is found to have a natural frequency of 20 rad/s without passengers and 17.32 rad/s with passengers of mass 500 kg. Determine the mass of the automobile by treating it as a single degree of freedom system. (10%)
- (5) The particular solution of the linear system $m\ddot{x} + c\dot{x} + kx = F_0 \cos \omega t$ is given by $x_p(t) = X \cos (\omega t \phi)$. Determine the amplitude X of the particular solution. (10%)
- (6) The body of arbitrary shape (Fig. 1) has a mass m, mass center at G, and a radius of gyration about G of k_G . If it is displaced a slight amount θ from its equilibrium position and released, determine the natural period of vibration. (10%)

- (7) If a particle's position is described by the polar coordinates $r = (2 \sin 2\theta) m$ and $\theta = (4t) rad$, where t is in seconds. Determine the radial and tangential components of its velocity and acceleration when t = 1s. (20%)
- (8) As shown in Fig. 2, Block B has a mass of 0.75 kg and is sliding forward on the smooth surface with a velocity $(v_B)_1 = 4$ m/s when it strikes the 2-kg block A, which is originally at rest. If the coefficient of restitution between the blocks is e = 0.5, compute the velocities of A and B just after collision. (20%)