科目:材料力學【機電系碩士班乙組】

題號:4094 共5頁第1頁

一、選擇題 (單選題)	(下列 20 題選擇題,每題 2.5 分,共計 50 分)
	(請於答案紙上作答,僅在試題上作答部份將不與計分)

- 1. ()在平面應力(Plane Stress)假設下,若一機件上某點之應力值,已知為 $\sigma_{xx}=10~\mathrm{MPa}$, $\sigma_{yy}=2~\mathrm{MPa}$,且 $\tau_{xy}=4~\mathrm{MPa}$,下列結果何者為誤?
 - (A) 最大主應力值為 11.7 MPa
 - (B) 最小主應力值為零
 - (C) 最大剪應力值為 4 MPa
- (D) 最大主應力值一定在 XY 平面上

- (E) 以上皆非
- 2. ()下列那一個公式係用於計算兩接觸曲面間之表面接觸應力?
 - (A) Hertz Equation
- (B) Sodeberg's Equation
- (C) Modified Goodman's Equation (D)
 - D) Miner's Rule

- (E) 以上皆非
- 3. ()下列那一個公式係用於計算工件承受疲勞負載時之殘留壽命?
 - (A) Hertz Equation

- (B) Sodeberg's Equation
- (C) Modified Goodman's Equation
- (D) Miner's Rule

- (E) 以上皆非
- (I) Following strains are derived from three strain gages which are located on the free surface of a loaded body.

$$\varepsilon_{xx} = 0.005$$
; $\varepsilon_{yy} = 0.01$ and $\gamma_{xy} = 0$

Consider the Young's modulus and the Poisson's ration of this body are $E = 207 \, GPa$ and v = 0.3 respectively.

- 4. () The principal stress $\sigma_1, \sigma_2, \sigma_3$ at this measured point are
 - (A) $\sigma_1 = 2.616$; $\sigma_2 = 1.820$ and $\sigma_3 = 0$ GPa
 - (B) $\sigma_1 = 12.36$; $\sigma_2 = 0$ and $\sigma_3 = -32.36$ GPa
 - (C) $\sigma_1 = 2.616$; $\sigma_2 = -2.30$ and $\sigma_3 = -32.36$ GPa
 - (D) $\sigma_1 = 32.36$; $\sigma_2 = 1.820$ and $\sigma_3 = 0$ GPa
 - (E) None
- 5. () The maximum shear stress τ_{max} at this point.
 - (A) $\tau_{\text{max}} = 1.308 \text{ GPa}$
- (B) $\tau_{\text{max}} = 22.36 \text{ GPa}$
- (C) $\tau_{\text{max}} = 17.488 \text{ GPa}$
- (D) $\tau_{\text{max}} = 0 \text{ GPa}$
- (E) None

科目:材料力學【機電系碩士班乙組】

題號:4094 共5頁第2頁

(II) A crank is loaded by a force F=300 lbf that causes twisting and bending of a 3/4 inch diameter shaft fixed to a support at the origin of the reference system.

-) The bending stress at a stress element A is
 - (A) $\sigma_x = 19400 \ psi$ (B) $\sigma_x = 47100 \ psi$
 - (C) $\sigma_x = 68900 \ psi$ (D) $\sigma_x = 94700 \ psi$ (E) None
- 7. () The torsional stress at a stress element A is
 - (A) $\tau_{xz} = -14500 \text{ psi}$ (B) $\tau_{xz} = -44500 \text{ psi}$

 - (C) $\tau_{xz} = 14500 \ psi$ (D) $\tau_{yz} = 44500 \ psi$ (E) None
-) Point A is in a state of
 - (A) Plane strain state in the xz plane
 - (B) Plane stress state in the xz plane
 - (C) Plane strain state in the xy plane
 - (D) Plane stress state in the xy plane
-) The maximum principal stress at the point A is 9. (
 - (A) $\sigma_1 = 3.82 \text{ kpsi}$ (B) $\sigma_2 = 47.1 \text{ kpsi}$
 - (C) $\sigma_1 = 51.2 \text{ kpsi}$ (D) $\sigma_2 = 93.87 \text{ kpsi}$ (E) None
-) The maximum shear stress at the point A is
 - (A) $\tau_{\text{max}} = 2.56 \text{ kpsi}$ (B) $\tau_{\text{max}} = 4.76 \text{ kpsi}$
 - (C) $\tau_{\text{max}} = 11.2 \text{ kpsi}$ (D) $\tau_{\text{max}} = 27.7 \text{ kpsi}$ (E) None

科目:材料力學【機電系碩士班乙組】

題號:4094 共5頁第3頁

- (III) A hot-rolled steel has a yield strength of $S_{yt} = S_{yc} = 400$ MPa. Estimate the factor of safety for the principal stress states of $\sigma_1 = 100$ MPa, $\sigma_2 = 0$ MPa, and $\sigma_3 = -100$ MPa.
- 11. () The factor of safety based on the maximum shear stress theory is
 - (A) SF = 4.0 (B) SF = 2.30 (C) SF = 2.0
 - (D) $SF = \infty$ (E) None
- 12. () The factor of safety based on the maximum distortion energy theory is ((A) SF = 4.0 (B) SF = 2.30 (C) SF = 2.0
 - (D) $SF = \infty$ (E) None
- 13. () The factor of safety based on the maximum normal stress theory is
 - (A) SF = 4.0 (B) SF = 2.30 (C) SF = 2.0
 - (D) $SF = \infty$ (E) None
- (III) Assume the stress tensor at a point is

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} -2 & 4 & 0 \\ 4 & -8 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{(MPa)}$$

- 14. () The principal stresses at this point is
 - (A) $\sigma_1 = 0$; $\sigma_2 = 0$ and $\sigma_3 = -10$ MPa
 - (B) $\sigma_1 = 12.36$; $\sigma_2 = 0$ and $\sigma_3 = -32.36$ MPa
 - (C) $\sigma_1 = 0$; $\sigma_2 = -23.0$ and $\sigma_3 = -32.36$ MPa
 - (D) $\sigma_1 = 0$; $\sigma_2 = 0$ and $\sigma_3 = -32.36$ MPa
 - (E) None
- 15. () The maximum shear stress at this point is
 - (A) $\tau_{\text{max}} = 5.0 \text{ MPa}$ (B) $\tau_{\text{max}} = 22.36 \text{ MPa}$ (C) $\tau_{\text{max}} = 16.18 \text{ MPa}$
 - (D) $\tau_{\text{max}} = 32.36 \text{ MPa}$ (E) None
- 16. () The stress state at this point is
 - (A) a pure bending stress state (B) a pure torsion stress state
 - (C) a pure transverse shear stress state (D) a plane stress state (E) None
- 17. () The von-Mises stress at this point is
 - (A) $\tau_{\text{max}} = 5.0 \text{ MPa}$ (B) $\tau_{\text{max}} = 22.36 \text{ MPa}$ (C) $\tau_{\text{max}} = 16.18 \text{ MPa}$
 - (D) $\tau_{\text{max}} = 32.36 \text{ MPa}$ (E) None

科目:材料力學【機電系碩士班乙組】

題號:4094

共5頁第4頁

(IV) A homogeneous plate ABCD is subjected to a biaxial loading which results in the normal stress $\sigma_x = 150 \, MPa$ and $\sigma_z = 100 \, MPa$. Knowing that the plate is made of steel which E = 200 GPa and Poison's ratio v = 0.30.

- 18. () The change in length of edge AB is

 - (A) $+7.5 \mu m$ (B) $+10.8 \mu m$ (C) $+60.0 \mu m$
 - (D) $+120 \,\mu m$ (E) None
-) The change in length of edge BC is 19. (

 - (A) $+7.5 \mu m$ (B) $+8.8 \mu m$ (C) $+10.4 \mu m$
 - (D) $+20.6 \,\mu m$ (E) None
- 20. () The change in length of diagonal AC is
 - (A) $+47.5 \mu m$ (B) $+60.4 \mu m$ (C) $+101.4 \mu m$
 - (D) $+205.6 \,\mu m$ (E) None

科目:材料力學【機電系碩士班乙組】

題號:4094 共5頁第5頁

二、 問答分析及計算題 (下列共四題,共計50分)

- 1. Please plot the stress-strain diagrams (not to scale) and denote three specified points (if necessary) for (a) brittle materials, (b) ductile materials, such as mild steel, and (c) nonlinearly elastic materials. (15%)
- 2. What two conditions must be valid if the principle of superposition is to be applied? (10%)
- 3. A solid shaft of radius c is subjected to a torque T. Please determine the fraction of T that is resisted by the material contained within the outer region of the shaft as a tube, which has (a) an inner radius of c/2 and outer radius c, and (b) an inner radius 3c/4 and outer radius c. (10%)
- 4. In plane stress condition the normal stresses are -20 MPa and 90 MPa in x and y axes, and shear stress 60 MPa, respectively. Please find the principal strains and maximum shear strain with Young's modulus 10 GPa and Poisson's ratio 0.3. (15%)