人工程學系碩士班 固態組

科目:近代物理

*請在試卷答案卷(卡)內作答

(1) Based on the following Schrodinger equation $i\hbar \frac{\partial \psi}{\partial x} = \frac{-\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x)\psi$, Prove that probability density $\rho = \int_{-\infty}^{\infty} |\psi(x,t)|^2 dx$ is a

(2) Simple harmonic oscillator system can be described by the Schrodinger equation $\frac{-\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + \frac{1}{2} m\omega^2 x^2 \psi = E\psi$, prove that its Hamiltonian can well be written as $H = \hbar\omega(a^+a + \frac{1}{2})$, where $a = \frac{1}{\sqrt{2\hbar m\omega}}(ip + m\omega x)$ and $a^+ = \frac{1}{\sqrt{2\hbar m\omega}}(-ip + m\omega x)$. Note p and x denote, respectively, the momentum and position. (20%)

time-independent constant if ψ satisfies the condition of square-integrable. (20%)

- (3) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$. Meanwhile, prove that these eigenvectors are orthogonal. (20%)
- (4) Density of states $D(\varepsilon)$ means the number of eigenstates in a small interval d ε around energy ε . According to such a definition. Describe $D(\varepsilon)$ as a function of ε for different semiconductor heterostructures: quantum wells, wires and dots. (20%)
- (5) Write out the Fermi-Dirac distribution function and the Boson-Einstein distribution function. (10%)
- (6) Briefly describe what the Bloch theorem is. (10 %)

