國立中山大學101學年度碩士暨碩士專班招生考試試題

科目: 高等微積分【應數系碩士班丙組】

題號:4050 共 1 頁 第 1 頁

每題佔20%,總分100%。答題時,每題須寫下題號與詳細步驟。

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous.
 - (a) (10%) Prove or disprove: f maps open sets in \mathbb{R}^2 to open sets in \mathbb{R} .
 - (b) (10%) Prove or disprove: f is differentiable on \mathbb{R}^2 .
- 2. (a) (6%) Find the Taylor polynomial $P_n(x)$ of the function $f(x) = \frac{1}{1+x}$ at the point $x_0 = 0$. Give the error term R_n also.
 - (b) (6%) Show that for any |x| < 1, $\lim_{n \to \infty} R_n(x) = 0$.
 - (c) (8%) Hence or otherwise, show that $\tan^{-1}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ when $|x| \le 1$. (You may assume without proof that $\tan^{-1}(x) = \int_0^1 \frac{1}{1+x^2} dx$.)
- 3. Let $f: [a, b] \to \mathbb{R}$ be Lipschitz, that is, there is some K > 0 such that $|f(x) f(y)| \le K|x y|$ for any x, y in [a, b].
 - (a) (6%) Show that f is continuous at any point $x_0 \in [a, b]$.
 - (b) (8%) If $P = \{a = x_0, x_1, \dots, x_n = b\}$ is a partition of [a, b], show that

$$0 \le U(f, P) - L(f, P) \le K(b - a) ||P||,$$

where U(f, P) and L(f, P) are the upper sum and lower sum of f with respect to P, and $||P|| := \max_{1 \le k \le n} (x_k - x_{k-1})$ is the norm of P.

- (c) (6%) Hence or otherwise, show that f is integrable on [a, b].
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $a \in \mathbb{R}^n$, with f(a) > 0.
 - (a) (10%) Show that there is some $\delta > 0$ such that f(a + h) > 0 for any $||h|| < \delta$.
 - (b) (10%) Show from definition that the function $g(\mathbf{x}) = \frac{1}{f(\mathbf{x})}$ is differentiable at a with $\nabla g(\mathbf{a}) = \frac{-\nabla f(\mathbf{a})}{f(\mathbf{a})^2}$.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that $\lim_{x \to \infty} f(x) = L_+$, $\lim_{x \to -\infty} f(x) = L_-$, $(L_+, L_- \in \mathbb{R})$.
 - (a) (10%) Prove or disprove: f achieves its maximum value.
 - (b) (10%) Prove or disprove: If f is also differentiable on R, then $\lim_{x\to\infty} f'(x) = 0$.