國立嘉義大學九十七學年度 應用數學系碩士班(甲組)招生考試試題

科目:高等微積分

說明:本考試試題為計算、證明題,請標明題號,同時將過程作答在「答案卷」上。(1~3 題每題 20 分,4~5 題每題 15 分,第 6 題 10 分,共 100 分)

- 1. (a) Let $f: \Re \to \Re$ be an additive function, i.e., f(x+y) = f(x) + f(y) for all $x, y \in \Re$. If f is continuous at x = 0, show that f is continuous everywhere on \Re . (10%)
 - (b) Let $g: \Re \to \Re$, where $g(x) = \begin{cases} -2x & \text{if } x \text{ is a positive rational number,} \\ 2x & \text{if } x \text{ is a negative rational number,} \\ 0 & \text{therwise.} \end{cases}$

Determine the continuity of g and justify your answer. (10%)

- 2. Determine whether the following statements true or false and justify your answers. (Hint: Prove your answer or find a counter example.)
 - (a) Let $\{u_i\}$ be a sequence of real numbers. If $\sum_{i=1}^{\infty} u_i$ converges, then $\sum_{i=1}^{\infty} (u_i)^3$ converges, too. (5%)
 - (b) Let $[a, b] \times [c, d] \equiv \left\{ (x, y) \in \mathbb{R}^2 \mid x \in [a, b], y \in [c, d] \right\}$ and $f:[a, b] \times [c, d] \to \mathbb{R}$ be a real value function. If $\int_a^b \left(\int_c^d f(x, y) \, dy \right) dx$ and $\int_c^d \left(\int_a^b f(x, y) \, dx \right) dy$ are exist, then $\int_a^b \left(\int_c^d f(x, y) \, dy \right) dx = \int_c^d \left(\int_a^b f(x, y) \, dx \right) dy$. (5%)
 - (c) Let A be a compact subset of \Re^n . If the function f is continuous on A, then $f:\Re^n\to\Re^m$ is uniformly continuous on A. (5%)
 - (d) $f(x) = \sum_{n=1}^{\infty} \left(\frac{\sin nx}{n^2} \right) x^3$ is continuous on \Re . (5%)
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R}^2 \to \mathbb{R}$ real-valued functions, where

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{otherwise,} \end{cases} \text{ and } g(x, y) = \begin{cases} \frac{x^4 + y^4}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{otherwise.} \end{cases}$$

Determine whether f and g are differentiable at (0, 0) and justify your answer. (20%)

- 4. Prove the following statements:
 - (a) If $\sum_{n=0}^{\infty} a_n$ is an absolutely convergent series, then the series $\sum_{n=0}^{\infty} a_n \cos(nx)$ is absolutely and uniformly convergent on the interval $[-\pi, \pi]$. (8%)
 - (b) If $\{b_n\}$ is a decreasing sequence of positive numbers and the series $\sum_{n=1}^{\infty} b_n \cos(nx)$ is uniformly convergent on the interval $[-\pi, \pi]$, then $\lim_{n \to \infty} n b_n = 0$. (7%)
- 5. Show that every bounded monotone real value function is integrable. (15%)
- 6. Find the extreme values of the function f(x, y, z) = 4xy + 2xz + 2yz subject to the constraint xyz = 16. (10%)