國立中山大學 101 學年度碩士暨碩士專班招生考試試題

科目:數理統計【應數系碩士班甲組】

題號:4052 共1頁第1頁

共十題,每題 10 分。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

- 1. If X is an exponential random variable with mean $\frac{1}{\lambda}$, find that $E[X^k]$, $k=1, 2, \ldots$
- 2. Find the probability density function of $Y = e^X$ when X is normally distributed with parameters μ and σ^2 .
- 3. Let X_1 , X_2 , and X_3 be uncorrelated random variables, each with mean μ and variance σ^2 . Find, in terms of μ and σ^2 , $Cov((X_1 + X_2)(X_2 + X_3))$ and $Cov((X_1 + X_2)(X_1 X_2))$
- 4. Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f_X(x) = \begin{cases} 1/\theta & 0 < x < \theta \\ 0 & \text{otherwise.} \end{cases}$$

Let $X_{(1)} < \cdots < X_{(n)}$ be the order statistics. Show that $X_{(1)}/X_{(n)}$ and $X_{(n)}$ are independent random variables.

- 5. Given that N=n, the conditional distribution of Y is χ^2_{2n} . The unconditional distribution of N is Poisson(θ). Calculate E[Y] and Var(Y).
- 6. Let X_1, \ldots, X_n be a random sample from the pdf

$$f(x|\mu,\sigma) = \frac{1}{\sigma}e^{-(x-\mu)/\sigma}, \quad \mu < x < \infty, \ 0 < \sigma < \infty.$$

Find a two-dimensional sufficient statistic for (μ, σ) .

7. Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \theta > 0.$$

- (a) Is ΣX_i sufficient for θ ?
- (b) Find a complete sufficient statistic for θ .
- 8. Let X_1, \ldots, X_n be a random sample from the pdf

$$f(x|\theta) = \theta x^{-2}, \quad 0 < \theta \le x < \infty.$$

- (a) Find the MLE of θ .
- (b) Find the method of moments estimator of θ .
- 9. Suppose that we have two independent random samples: X_1, \ldots, X_n are exponential(θ), and Y_1, \ldots, Y_m are exponential(μ). Find the likely ratio test (LRT) of H_0 : $\theta = \mu$ versus H_1 : $\theta \neq \mu$.
- 10. Derive a confidence interval for a binomial p by inverting the LRT of H_0 : $p = p_0$ versus H_1 : $p \neq p_0$.