國立高雄第一科技大學 97 學年度 碩士班 招生考試 試題紙

系所別:<u>系統資訊與控制研究所</u>組別:<u>控制組</u>

考科代碼: 1421 考 科: 工程數學

注意事項:

1、本科目可使用本校提供之電子計算器。

2、請於<u>答案卷上規定之範圍作答</u>, 違者該題不予計分。

1 A linear differential equation

$$\frac{\mathrm{dy}}{\mathrm{dt}} + 4y = f(t)$$

is found to have a particular solution

 $y = 2t^2 - t + 1$ when $f(t) = 8t^2 + 3$ and a particular solution

 $y = 0.8\cos(3t) + 0.6\sin(3t)$, when $f(t) = 5\cos(3t)$,

a) Suggest a particular solution when $f(t) = 10\cos(3t) + 4t^2 + (3/2)$ (3%), and show by substitution that your solution is correct. (2%)

b) Suggest a particular solution when $f(t) = 5\cos(3(t-10))$ (3%), and show by substitution that your solution is correct. (2%)

2 Solve the following differential equations with the given initial conditions

(a)
$$\frac{dy}{dx} - 3y = 0$$
, $y(0) = 1$; (10%)

(b)
$$\frac{dy}{dt} + 5 = \sin(12t), y(0) = 0; (10\%)$$

(c)
$$3\frac{dy}{dt} + 2y = e^{-t}$$
, $y(0) = 3$. (10%)

3 An LRC circuit as shown in Fig. 1 obeys the equation

$$Ld^2/dt^2 + Rdq/dt + q/C = v(t)$$

Where q is the charge on the capacitor, v(t) is the applied voltage, L is the inductance, R is the resistance, and C is the capacitance. Find a steady state solution for q as $R = 120\Omega$, L = 0.06H, C = 0.0001F, $v(t) = 130\cos(1000t)$, and hence calculate the voltages across the capacitor, resistor, and inductor, given by $v_C = q/C$, $v_R = Rdq/dt$ and $v_L = Ld^2q/dt^2$. (10%)

Fig. 1. A LRC circuit.

- An RC circuit is subjected to a single frequency input of angular frequency w and magnitude v_i . Find the steady state solution of the equation $Rdq/dt + (q/C) = v_i e^{jwt}$, (6%) and hence find the voltages across capacitor ($v_C = q/C$) (2%), and resistor ($V_R = Rdq/dt$). (2%)
- Evaluate the integral $\int_{C(z-z_0)^2}^{\sin z} dz$, where C is a simple closed curve for the following cases (i) z_0 is not enclosed by C (ii) z_0 is enclosed by C. (10%)
- 6 Solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} + y = \delta(t - a)$$

with
$$y(0) = 1$$
, $a > 0$,

- (i) by the Laplace transform method, (5%)
- (ii) by finding the integrating factor. (5%)
- 7 Solve the following exact first-order differential equations (10%)

(i)
$$xdx + ydy = (x^2 + y^2)dy$$

(ii)
$$ye^{xy}dx + xe^{xy}dy = 0$$

8 Solve the following separable first-order differential equations (10%)

(i)
$$x^2dx + 3y^3dy = 0$$

(ii)
$$xydx + \sqrt{1 - x^2}dy = 0$$