國立高雄第一科技大學 97 學年度 碩士班 招生考試 試題紙 系所別:<u>系統資訊與控制研究所</u>組別:<u>控制組</u> 考科代碼: <u>1422</u> 考 科: <u>自動控制</u> ## 注意事項: 1、本科目可使用本校提供之電子計算器。 2、請於<u>答案卷上規定之範圍作答</u>, 違者該題不予計分。 1.(14分) 請分別就下列各種補償控制器(Compensator)說明其轉移函數、功用效果 (Function)、及其特性(Characteristics): (a)PI Compensator (b)Lag Compensator (c) PD Compensator (d)Lead Compensator (e)PID Compensator (f)Lead-Lag Compensator. (各 2%, 2%, 2%, 2%, 3%, 3%) 2 (14分) (a) 請繪出一 OP-Amp 之等效電路圖,並說明其理想特性爲何? (4%) (b) Derive the transfer function, $G(s) = V_0(s) / V_1(s)$, in terms of Z₁ and Z₂, for the non-inverting amplification circuit shown in the left below. (5%) (c) Find the transfer function, $G(s) = V_0(s) / V_2(s)$, for the non-inverting circuit shown in the right below. (5%) 3. (12分) (a) A system represented in state space as $$\dot{x} = Ax + Bu$$ $y = Cx + Du$ can be transformed to a similar system with x = Pz. Derive the transformed system. $$z = A'z + B'u$$ $$y = C'z + D'u$$ (b) Given the system as follows, find the diagonal system that is similar $$\dot{x} = \begin{bmatrix} 0 & 1 \\ -12 & -7 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$ $$y = \begin{bmatrix} 1 & -1 \end{bmatrix} x + 5 u(t)$$ 第1頁,合計3頁【尚有試題】 - 4.(12分) Given the dc-motor driven system as shown below with fixed field, - (a) derive and draw the system block diagram with input Ea(s), output $\theta m(s)$, armature current Ia(s), motor torque Tm(s), and speed $\omega m(s)$ - (b) find the transfer function, θm (s) / Ea(s). - 5.(12分) Given the dc-motor driven system as shown below with the same motor as in problem 4, - (a) derive the total inertia *Im* and total damping *Dm*, both refer to the motor axis - (b) draw the system block diagram with input Ea(s), armature current Ia(s), motor torque Tm(s), motor speed $\omega m(s)$, velocity V(s) of mass M and displacement X(s) of mass M. - (c) find the transfer functions, X(s) / Ea(s). - 6.(18分) Given an uncompensated feedback system as shown below, do the following (approximate solution is enough) - (a) Sketch the root locus, including the asymptotes with real-axis intercept, σa , and angle, θa for the uncompensated system. (4%) - (b) Find the value of K for the uncompensated system to have < 5% overshot. (4%) (for %OS < 5%, you can approximate $\zeta = \cos \theta = 0.707$, or $\theta = 45^{\circ}$) - (c) Design a PD controller so that the system can operate with a settling time that is half that of the uncompensated system with the same overshot. (5%) - (d) Sketch the root locus of the PD compensated system (5%) - 7.(18分) Given a unity feedback system as shown below, - (a) Plot the Bode diagram with $G_c(s) = K = 1000$. (3%) - (b) Find the phase margins and bandwidth of the uncompensated system in (a). (3%) - (c) Find the steady-state error for a ramp input, r(t) = 10tu(t), (4%) - (d) Design a lag compensator Gc(s) for the system to have phase margin of 60° with the same steady-state error. (4%) - (e) Find the bandwidth of the compensated system. (4%)