國立臺北大學九十七學年度碩士班招生考試試題

系 (所)别:國際企業研究所

科 目:統計學

第1頁共4頁

☑可 □不可使用計算機

本次考試題目皆爲填充題

- 1. The linear regression lines: Y=30.331-1.877X and X=15.481-0.503Y

 The absolute value of Pearson correlation coefficient between variables X and Y is _____. (5%)
- 2. Americans spend an average of 8.6 minutes (μ) per day reading newspapers nationally. A researcher believes that individuals in management positions spend more than the national average time per day reading newspapers. A sample of individuals in management positions will be selected by the researcher. The null hypothesis for this study is _______.(5%)
- 3. In a study, MML is an instrument designed to assess severity of patient's disability. There are 5 patients and 3 raters who used MML to assess patient disability in this study. Each patient was evaluated by 3 raters simultaneously in the admission of medical hospital in Canada. One-way ANOVA using patient as the factor was performed. SST(total variance), SSTR (between-group variance), and SSE(within-group variance) were calculated as sum of squares in ANOVA table. The sum of square measuring the consistency among raters in ANOVA table is ______. (5%)
- 4. Lynn is interested in buying one of stocks X and Y. The annual rate of return on stock X is normally distributed with mean of 17% and standard deviation of 3%. The quarterly rate of return on stock Y is also normally distributed with mean of 4% and standard deviation of 2%. Assume that four quarterly rate of returns in a year are independent. The probability that the annual rate of return for stock X is less than the annual rate of return for stock Y is ______. (5%)
- 5. Suppose that μ_A and μ_B are the mean cost using method A and method B, respectively. Assuming the cost for both methods are normally distributed with equal variances. Two random samples were collected. _____ and ____ are two different statistical methods which can be used to test the null hypothesis $H_0: \mu_A = \mu_B$. (10%)
- 6. A company has recorded data on the daily demand for its product (Y in thousands of units) and the unit price (X in hundreds of dollars). A sample of 18 days demand and associated prices resulted in the following data. In order to predict Y using X, a regression line is fitted. To determine whether the slope is significantly different from zero with α = 0.05, the value for t statistic is _____. (10%)

$$\Sigma X = 75$$
 $\Sigma Y = 135$ $\Sigma (Y - \overline{Y})(X - \overline{X}) = -59$

$$\Sigma (X - \overline{X})^2 = 81$$
 $\Sigma (Y - \overline{Y})^2 = 100$ SSE = 64

- 7. A state highway patrol periodically samples vehicle speeds at various locations on a particular highway system into order to test vehicle speeds $H_0: \mu \le 65$ vs $H_a: \mu > 65$ A sample of 64 vehicles will be selected and the population standard deviation is assumed to be 4 miles per hour. With 0.05 level of significance, the probability of making a Type II error when the actual mean speed is 69 miles per hour is ______. (10%)
- 8. The data consist of the length of service calls in minutes (the response variable, Y) and units of components repaired (the predictor variable, X). A regression analysis was conducted to predict the relationship of the two variables. The data and results are as follows:

Minutes	23	29	49	64	74	87	96	97	109	119	149	145	154	166
Units	1	2	3	4	4	5	6	6	7	8	9	9	10	10

$$\bar{x} = 6$$
, $\bar{y} = 97.21$, $\Sigma(x_i - \bar{x})^2 = 114$, $\Sigma(y_i - \bar{y})^2 = 27768.36$, $\Sigma(x_i - \bar{x})(y_i - \bar{y}) = 1768$

國立臺北大學九十七學年度碩士班招生考試試題

系 (所)别:國際企業研究所

科 目:統計學

第2頁共4頁回可口不可使用計算機

	Sum of	Mean			
Source	DF Squares	Square	F Value	Pr > F	
Model	1 27420	27420	943.20	.0001	
Error	12 348.84837	29.07070			
Corrected Total	13 27768				
Root MSE	5.39172 R-Square	0.9874			
Dependent Mean	97.21429 Adj R-S	0.9864			
Coeff Var	5.54623				
	Parameter Sta	ndard			
Variable DF	Estimate E	ror			
Intercept 1	4.16165 3.3	5510			
Units 1	15.50877 0.5	0498			
a. What is the 95	% confidence interv	al for the reg	ession para	ameter of the units of components repaired?	
	(10	%)			
	0/ confidence inter	al for the mad	n recnance	when the units equal 4?	(10%)

positive rate of 0.05 and a false negative rate of 0.01; that is, 5% of tests on non-diseased people will indicate the presence of the disease while 1% of tests on people with the disease will not indicate the presence of the disease. If a person drawn at random from the population tests positive, what is the probability that that person has the disease?

(10%)

10. Suppose that X is a continuous random variable with density

$$f_X(x) = \begin{cases} |x| & for -1 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

11.Let \overline{X} , \overline{Y} , S_X^2 and S_Y^2 be the respective sample means and unbiased estimates of the variance using independent samples of sizes n and m from the normal distributions $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$, where $\mu_X, \sigma_X^2, \mu_Y, \sigma_Y^2$ are unknown. If $\sigma_X^2 / \sigma_Y^2 = d$, a

known constant. What is the standard deviation of
$$\frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{d\sigma_Y^2/n + \sigma_Y^2/m}}$$
? (10%)