國立台灣科技大學九十七學年度碩士班招生試題

系所組別: 電機工程系碩士班乙組

科 目: 電力電子學

「總分100分」

1. The voltage v across a load and the current i into the positive-polarity terminal are as follows:

$$v(t) = 240\sqrt{2}\cos(\omega t) + 80\sqrt{2}\cos(3\omega t) \quad V \quad \text{and} \quad$$

$$i(t) = 60\sqrt{2}\cos(\omega t - 30^{\circ}) + 20\sqrt{2}\cos(3\omega t + 30^{\circ}) + 12\sqrt{2}\cos(5\omega t - 60^{\circ}) + 9\sqrt{2}\cos(7\omega t) \quad \text{A} \,,$$

where $\omega = 377$ rad/sec. Calculate

- (a) the rms value of v(t), (4%)
- (b) the total harmonic distortion in the current i(t), (4%)
- (c) the average power into the load, (4%)
- (d) the load power factor. (4%)
- 2. In the simplified rectifier of Fig. P2, the balanced three-phase voltage sources are pure sinusoidal with 220 V(rms) line-to-line voltage and frequency at 60Hz. If $I_d = 10$ A, please answer the following questions.
 - (a) Calculate the average value of the dc-side output voltage v_d . (4%)
 - (b) Calculate the rms value of the line current i_a . (4%)
 - (c) Calculate the power factor at which this rectifier is operating. (5%)
 - (d) What is the maximum instantaneous voltage across each diode? (5%)

3. Figure P3 shows a single-phase, phase-controlled rectifier connected to a 60Hz ac source with ac-side inductance L_s . Let $v_s = 110\sqrt{2}\sin\omega t$ V, $L_s = 1.5$ mH, $I_d = 20$ A and the delay angle $\alpha = 30^{\circ}$.

- (a) Calculate the commutation interval u. (4%)
- (b) Calculate the average value of the dc-side output voltage v_d . (4%)
- (c) Draw v_s , i_s and v_d waveforms. (8%)

Fig. P3

國立台灣科技大學九十七學年度碩士班招生試題

系所組別: 電機工程系碩士班乙組

科 目: 電力電子學

4. For the step up converter shown in Fig. P4, the duty ratio is adjusted to regulate the output voltage V_o as 48 V. The input voltage varies in a wide range from 12 V to 36 V. The maximum power output is 240 W. The switching frequency is 100 kHz. Assuming ideal components and C as very large, calculate the maximum value of L that can be used to keep the converter always operating in a discontinuous conduction mode (20 %)

Fig. P4

- 5. For the CUK converter shown in Fig. P5. Assuming C₁ to be sufficiently large and the converter operates in a continuous conduction mode.
 - (a) Draw the waveforms of v_{L1} and v_{L2} . (10 %)
 - (b) Derive the voltage gain $\frac{V_o}{V_d}$ of this converter. (10 %)

Fig. P5

- 6. Briefly explain the following terms.
 - (a) Sinusoidal pulse-width modulation (5 %)
 - (b) Blanking time (5 %)

