國立臺灣師範大學九十七學年度碩士班考試入學招生試題

代數 科試題 (數學系用,本試題共2頁)

权岩组

注意: 1.依次序作答,只要標明題號,不必抄題。 2.答案必須寫在答案卷上,否則不予計分。

- 1. (10 pts) Let G be a group and let $\mathbb{Z}(G)$ be the center of G. Show that if $G/\mathbb{Z}(G)$ is cyclic, then G is abelian.
- 2. (10 pts)
 - (a) Find the commutator subgroup of the group S_3 .
 - (b) Show that the Klien four group $\{e, (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of A_4 .
- 3. (10 pts) Show that a group of order 72 is not simple.
- 4. (10 pts)
 - (a) Let \mathbb{R} be the group of real numbers under addition and let \mathbb{R}^+ be the group of all positive real numbers under multiplication. Show that the two groups \mathbb{R}, \mathbb{R}^+ are isomorphic.
 - (b) Show that the automorphism group of \mathbb{Z}_n is isomorphic to \mathbb{Z}_n^* , where $\mathbb{Z}_n^* = \{ [i] \in \mathbb{Z}_n \mid (i,n) = 1 \}$ under multiplication modulo n.
- 5. (10 pts) Let p be a prime number. If f(x) is an irreducible polynomial of degree n in $\mathbb{Z}_p[x]$, show that there is a polynomial g(x) in $\mathbb{Z}_p[x]$ such that $x^{p^n} x = f(x)g(x)$.
- 6. (18 pts) Prove or disprove each of the following statements.
 - (a) $1 + \sqrt{-19}$ is a prime element in $\mathbb{Z}[\sqrt{-19}]$.
 - (b) $\mathbb{Z}[\sqrt{-19}]$ is a unique factorization domain (UFD).
 - (c) If R is a principal ideal domain (PID), then R[x] is a PID.
- 7. (12 pts) Let R be a ring with 1, not necessarily commutative. Recall that an element x in R is said to be nilpotent if $x^n = 0$ for some positive integer n. Moreover, a subset N of R is called nil if every element in N is nilpotent. Suppose that I and J are nil ideals of R.
 - (a) If M is an ideal of R such that $I \subseteq M$ and M/I is a nil ideal of R/I, show that M is nil.
 - (b) Is it true that I + J is nil? Explain your answer.

- 8. (20 pts) Let $E \subseteq \mathbb{C}$ be the splitting field of the polynomial $f(x) = x^4 2$ over \mathbb{Q} . Let $\alpha = \sqrt[4]{2}$, $i = \sqrt{-1}$.
 - (a) Prove that $x^4 2$ is irreducible over \mathbb{Q} .
 - (b) Determine $[E:\mathbb{Q}]$.

.

- (c) Show that there exists an element σ in $G = \text{Gal}(E/\mathbb{Q})$ such that $\sigma(\alpha) = \alpha i$ and $\sigma(i) = -i$.
- (d) Suppose that $H = \langle \sigma \rangle$ is the subgroup of G generated by σ and let $K = \{ x \in E \mid h(x) = x \text{ for all } h \in H \}$ be the fixed field of H in E. Find out K.

·