中原大學97學年度碩士班入學考試

4月13日14:00~15:30 應用數學系數學組

誠實是我們珍視的美德, 我們喜愛「拒絕作弊,堅守正直」的你!

科目: 高等微積分(滿分150分)

(共1頁第1頁)

□可使用計算機,惟僅限不具可程式及多重記憶者

■不可使用計算機

In the following, each problem awards 10 points.

Part I. Prove or disprove the following statements.

- 1. Let $\{x_n\}$ be a sequence in **R** and $|x_{n+1} x_n| < \frac{1}{n}$, then $\{x_n\}$ is a Cauchy sequence.
- 2. If $\limsup x_n = 1$, then $x_n \le 1$ for *n* large enough.
- 3. Let A and B be sets in a metric space and \overline{A} and \overline{B} be the closure of A and B respectively, then $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 4. Let S be a set with the discrete metric, then S is complete.
- 5. Every bounded and closed set in a metric space is compact.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and A be open in \mathbb{R} , then f(A) is also open in \mathbb{R} .
- 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous and $A = \{f(x) : ||x|| = 1\}$, then A is a closed and bounded interval.
- 8. Let $f_n(x) = x x^n$, then f_n converges uniformly on [0,1].
- 9. Let $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$, then f is continuous on [0,1].

Part II. Prove the following statements.

10. Let $f_n(x) = n^3 x^n (1-x)$, then f_n doesn't converge uniformly on [0,1].

(Hint: Consider the integral $\int_{0}^{1} f_{n}(x)dx$.)

- 11. Let A be open in \mathbb{R}^n and $x + A = \{x + y : y \in A\}$, then x + A is also open in \mathbb{R}^n .
- 12. Let A and B are connected sets in a metric space and $A \cap B \neq \phi$, then $A \cup B$ is also connected.
- 13. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and one-to-one, then f is either increasing or decreasing.
- 14. Let $A \subset \mathbb{R}$ be uncountable, then A has a limit (accumulation) point. (Hint: Consider the set of rational numbers and assume by the contrary.)
- 15. Let $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$, then A is compact and connected. (Hint: Consider the mapping $f(\theta) = e^{i\theta}$.)