國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:通訊系統 考試時間:100分鐘 系所:

電機工程學系碩士班通訊組 是否使用計算機:是

本科原始成績:100分

1 • Briefly describe the following terminologies: (10%)

- (a) Matched Filter
- (b) Carson
- (c) PCM
- (d) Sampling Theorem
- (e) Quantization Noise

2 \ Let a random process be given as

 $Z(t) = X(t)\cos(w_0t + \theta)$

where X(t) is a stationary random processes with $E\{X(t)\}=0$, $E\{X^2(t)\}=\sigma^2$ and $E\{X(t)X(t+\tau)\}=R_{X}(\tau).$

- (a) If θ is a random variable independent of X(t) and uniformly distributed in the interval $(-\pi, \pi)$, Find $E\{Z(t)\}$ and $E\{Z^2(t)\}$. Is Z(t) wide-sense stationary? Provide your explanation. (5%)
- (b) Let $Z(t) = X(t)\cos(w_0t + \theta) + Y(t)\sin(w_0t + \theta)$ where X(t) and Y(t) are stationary Gaussian random process with $E\{X(t)\} = E\{Y(t)\} = 0$, $E\{X^2(t)\} = E\{Y^2(t)\} = \sigma^2$, $E\{X(t)X(t+\tau)\}=E\{Y(t)Y(t+\tau)\}=R(\tau), X(t) \text{ and } Y(t) \text{ are uncorrelated for any } t. \text{ If } \theta \text{ is a } t$ random variable independent of X(t), Y(t) and uniformly distributed in the interval $(-\pi, \pi)$, Find $E\{Z(t)\}$ and $E\{Z^2(t)\}$. Is Z(t) stationary? Provide your explanation. (5%)
- (c) If $\theta = 0$, find $E\{Z(t)\}$ and $E\{Z^2(t)\}$. Is Z(t) stationary? Provide your explanation. (5%)
- 3 \ A binary communication system transmits signals $s_i(t)$ (i=1, 2). The receiver test statistic is $r = s_i + n$, where the signal component s_i is either $s_1 = 2$ or $s_2 = -2$ and the noise component *n* has a probability density function of

$$p(n) = \begin{cases} (3-|n|)/9 & if |n| \le 3 \\ 0 & otherwise \end{cases}$$

- (a) If $s_1(t)$ and $s_2(t)$ are transmitted with an equal probability, determine the probability of error when the optimum decision is made. (8%)
- (b) If $s_1(t)$ is transmitted with a probability of 0.8, determine the value of the optimum decision threshold. (7%)
- 4 Draw the modulated waveforms of the binary sequence 10100010111 by using the baseband formats of (10%)
- (a) AMI (Bipolar)
- (b) Manchester (Bi-phase)

國立高雄大學九十七學年度研究所碩士班招生考試試題

科目:通訊系統 考試時間:100分鐘 系所:

電機工程學系碩士班通訊組 是否使用計算機:是

本科原始成績:100分

- (c) NRZ (nonreturn-to-zero)
- (d) RZ (return-to-zero)
- 5 Suppose that MSK is used to transmit information over an AWGN with a two-sided power spectral density of 10^{-8} W/Hz. The transmitted signal is $4\cos(2\pi f_0 t + \phi_n)$, where ϕ_n is the modulated phase or the corresponding frequency shift.
- (a) Draw the modulator. (5%)
- (b) Draw the structure of optimal receiver. (5%)
- (c) Determine the maximum data rate that can be sent with bit-error-rate $P_e = 10^{-6}$. (5%)
- 6 Consider three signals $s_1(t), s_2(t), s_3(t)$ shown in the following Figure, Express each of these signals in terms of a set of basis functions found by using the Gram-Schmidt orthogonalization procedure. (10%)

- 7 A source has six output denoted $(a_0, a_1, a_2, a_3, a_4, a_5)$ with respective probabilities (0.4, 0.2, 0.1, 0.1, 0.1, 0.1) (15%)
- (a) Calculate the entropy
- (b) Determine the codeword using Huffman code
- (c) Calculate the efficiency
- 8 You are allowed to use the frequency band B between 915 and 916 MHz. The allowed signal power is $P = 10^6$ power units. The noise in the band is additive white Gaussian noise with single-sided power spectral density $N_0 = 1$ power units per Hz. For the purposes of the feasibility study, you may assume optimally bandwidth-efficient modulation, ideal brick-wall (zero-rolloff) filters, perfect receiver synchronization, etc. What is the Shannon limit on the achievable data rate R in bits per second (b/s)? (10%)