編號:

133

圆立成功大學九十七學年度碩士班招生考试試題

共 / 頁 第] 頁

系所:工程科學系乙組

科目:數值分析

本試題是否可以使用計算機:□可使用,□不可使用(請命題老師勾選)

考試日期:0301,節次:1

1. The following partial differential equation with the boundary conditions

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y), \quad 0 \le x, \ y \le 3,$$

$$u(x,0) = g_1(x), \ u(x,3) = g_2(x), \ u(0,y) = h_1(y), \ u(3,y) = h_2(y),$$

can be expressed as the following matrix form by the finite-difference method

$$A\vec{U} = \vec{F}$$
,

where
$$x_0 = y_0 = 0$$
, $x_1 = y_1 = 1$, $x_2 = y_2 = 2$, $x_3 = y_3 = 3$, and

$$U = \{u(1,1), u(2,1), u(1,2), u(2,2)\}^T$$

Questions: What are the matrix A and the vector \overline{F} ? (30%)

2. The Gaussian quadrature for the following integral is expressed as

$$\int_{1}^{1} f(x)dx = \sum_{i=1}^{n} c_i f(x_i)$$

Questions: Using the Gaussian quadrature to calculate the following two integrals

(a)
$$\int_a^b f(x)dx$$
, (10%) and (b) $\iint f(x,y)dydx$, $0 \le x^2 + y^2 \le a^2$. (30%)

3. The Runge-Kutta method of order 4 for the differential equation

$$y'=f(t,y), a \le t \le b, y(a)=\alpha$$

is given by

$$w_0 = \alpha$$
, $k_1 = hf(t_i, w_i)$, $k_2 = hf(t_i + \frac{1}{2}h, w_i + \frac{1}{2}k_1)$, $k_3 = hf(t_i + \frac{1}{2}h, w_i + \frac{1}{2}k_2)$,

$$k_4 = hf(t_{i+1}, w_i + k_3), \quad w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4).$$

Question: Extended the Runge-Kutta method for the following equations

$$u'_1 = f_1(t, u_1, \dots u_n), \dots, u'_n = f_n(t, u_1, \dots u_n)$$
 with

$$u_1(a) = \alpha_1, \dots, u_n(a) = \alpha_n.$$
 (30%)