國立成功大學 113學年度碩士班招生考試試題

編 號: 71

系 所:機械工程學系

科 目: 工程數學

日期:0201

節 次:第3節

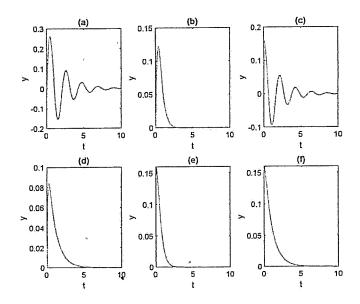
備 註:不可使用計算機

編號: 71

國立成功大學 113 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:工程數學


考試日期:0201,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Given that $f(t) = \begin{cases} 0.16, & t < 0 \\ 0, & t \ge 0 \end{cases}$ is a Heaviside step function and y(t) is the output, which of the following figures can be generated from y''(t) + y'(t) + 9 = f(t)? (10%) ((Select all that apply). Justify your answers.

Note: no points will be given if the explanation is incorrect

- 2. Evaluate the line integral $\int_c \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F}(x,y) = e^y \mathbf{i} \sin(\pi x) \mathbf{j}$ and C is the triangle with vertices (1,0), (0,1), (-1,0) traversed counterclockwise. (20%)
- 3. The rotational kinetic energy $T_{rot} = \frac{1}{2}I\omega^2$ can be represented in matrix form as, (20%)

$$T_{rot} = \frac{1}{2} (\omega_x \quad \omega_y \quad \omega_z) \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

where I_{xx} , I_{yy} , I_{zz} are moments of inertia with respect to the x, y and z axis, respectively. I_{xy} , I_{xz} , I_{yx} , I_{yz} , I_{zx} , and I_{zy} are products of inertia. A square flat plate has mass (m) of 3 and side length of 2. The rotation kinetic energy of the rotation around the axis x' with the x, y, z coordinate axes, and the origin can be represented as:

编號: 71

國立成功大學 113 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:工程數學

第2頁,共2頁

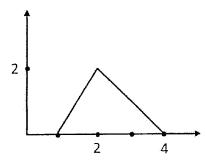
考試日期:0201,節次:3

$$T_{rot} = \frac{1}{2}(\omega_x \quad \omega_y \quad \omega_z) \begin{pmatrix} 4 & -3 & 0 \\ -3 & 4 & 0 \\ 0 & 0 & 8 \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

(i) Find the direction of new coordinate x', y' and z', called principal axes, in which the object can rotate around at a constant angular speed without a need for any torque. In other words,

$$T_{rot} = \frac{1}{2} (\omega_{x'} \quad \omega_{y'} \quad \omega_{z'}) \begin{pmatrix} I_{x'x'} & 0 & 0 \\ 0 & I_{y'y'} & 0 \\ 0 & 0 & I_{z'z'} \end{pmatrix} \begin{pmatrix} \omega_{x'} \\ \omega_{y'} \\ \omega_{z'} \end{pmatrix}$$

- (ii) Find the corresponding $I_{x\prime x\prime}$, $I_{y\prime y\prime}$, and $I_{z\prime z\prime}$.
- 4. To solve the PDE by Laplace transforms


$$x\frac{\partial w}{\partial x} + \frac{\partial w}{\partial t} = xt, w(x, 0) = 0 \text{ if } x \ge 0, w(0, t) = 0 \text{ if } t \ge 0$$
 (15%)

- 5. To find the complex Fourier integral of the $f(x) = e^{-|x|}$, $-\infty < x < \infty$ (10%)
- 6.To prove that

(a) The Fourier sine series
$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
; $(0 \le x \le 0)$, (8%)

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 (7%)

7. Find the Laplace transformation of the following function. (10%)

