編號:

國立成功大學九十七學年度碩士班招生考試試題

共2頁,第/頁

系所:光電科學與工程研究所

55

科目:工程數學

本試題是否可以使用計算機: □可使用 「四不可使用 (請命題老師、勾選)

考試日期:0301,節次:3

- 1. A real square matrix is shown as $A = [a_{jk}]$, which transpose matrix and inverse matrix are A^{T} and A^{-1} , respectively.
- (a) Please answer what relations must be satisfied among A, A^{T} and A^{-1} when matrix A is symmetric, skew-symmetric, or orthogonal, respectively. (5%)
- (b) If matrix A is shown as $A = \begin{bmatrix} m & 0 \\ 0 & n \end{bmatrix}$, please find e^{At} ? (10%)

2.

(a) Find the Fourier series representation of

$$f(x) = \begin{cases} 0, & -\pi < x \le 0 \\ x, & 0 \le x < \pi \end{cases}$$
 (10%)

(b) From the Fourier expansion show that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots. \tag{10\%}$$

3. Please apply Green's theorem to evaluate $\oint_C (3xdy - 5ydx)$, the contour C is a circle and shown below. (15%)

4. The differential equation $m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$ can be used to describe a damped simple harmonic motion. Its solution can be written as the form of $x(t) = x_m e^{-\alpha t} \cos(wt + \phi)$, where x_m is the amplitude of the damped oscillator. Please solve this differential equation and find the α and w in terms of m, b, k (20%).

(背面仍有題目,請繼續作答)

編號: 55

圆立成功大學九十七學年度碩士班招生考试試題

共之頁・第)頁

系所:光電科學與工程研究所

科目:工程數學

本試題是否可以使用計算機:□可使用,□不可使用(請命題老師勾選)

考試日期:0301·節次:3

5. The binomial distribution is $P(m) = \frac{n!}{m!(n-m)!} p^m (1-p)^{n-m}$. In the limit

 $n \to \infty$, $p \to 0$, and np = a, find the new distribution P(m) (Hint: use

$$\lim_{n\to\infty}\left(1-\frac{a}{n}\right)^n=e^{-a})\ (10\%)$$

6. Using theorem of residues, calculate $\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\omega t}}{\omega_0^2 - \omega^2 + i\alpha\omega}$ ($\alpha > 0$) for