國立成功大學九十七學年度碩士班招生考試試題

共 5 頁,第/頁

系所:光電科學與工程研究所

53

科目:電子學

本試題是否可以使用計算機:

☑可使用 · □不可使用

(請命題老師勾選)

考試日期: 0301·節次:1

1. Under thermal equilibrium, which of the following approache(s) can create a built-in electric field in a semiconductor?(A)p-n junction(B) spatial variation of doping concentration(C)hetrojunction(D)Schottky contacts.(3%)

2. (a)As shown in Fig.1, the five forward I-V curves correspond to five p-n junction diodes made from different semiconductors with corresponding energy band gap $E_{g1},E_{g2},E_{g3},E_{g4}$ and E_{g5} . Please identify which of the following item(s) is(are) true.(A) $E_{g3}>E_{g4}(B)$ $E_{g5}>E_{g4}(C)$ $E_{g3}<E_{g4}$ (D) $E_{g3}>E_{g2}>E_{g1}$ (E) $E_{g1}>E_{g2}>E_{g3}(3\%)$

Fig.1

(b) As shown in Fig.2, if the five forward I-V curves correspond to a GaAs junction diode operated at different temperatures, please identify which of the following item(s) is (are) true.(A) $T_1>T_2(B)T_3>T_4(C)T_2>T_5(D)T_3>T_2(E)T_5>T_4(3\%)$

Fig.2

國立成功大學九十七學年度碩士班招生考試試題

共与頁第2頁

系所: 光電科學與工程研究所

科目:電子學

本試題是否可以使用計算機: ②可使用 · □不可使用 (請命題老師勾選)

考試日期:0301,節次:1

(c) As shown in Fig.3, if the five light output power-current (L-I) curves correspond to a GaAs LED operated at different pulsed injection currents, i.e., different duty cycles, which is defined in the inset of Fig.3. Please identify which of the following items is(are) true.(A)duty1> duty 2(B) duty 3> duty 4(C) duty 2> duty 5(D) duty 3> duty 2(E) duty 5> duty 4(3%)

Fig.3

3. For a pn junction with $N_A=10^{17}/cm^3$ and $N_D=10^{16}/cm^3$, please find, at T=300K, the built-in voltage(V_0), the width depletion region (W), and the distance it extends in the p side(X_p) and in the n side(X_n) of the junction. Use ni= $10^{16}/cm^3$ and

$$\varepsilon_{c} = 1.04 \times 10^{-12} F/cm$$
. (a) $V_0 = V(b) W = \mu m(c) X_p = \mu m(d) X_n = \mu m(8\%)$

4. In the circuit of Fig.4, transistor Q1 and Q2 have threshold voltage Vt=1 V, and the process transconductance parameter $k_n = 100 \mu A/V^2$. Assuming $\lambda = \frac{1}{V_A} = 0$ and $(W/L)_1 = (W/L)_2 = 20$, please find (a) $V_1 = V$ (b) $V_2 = V$ (c) $V_3 = V$ (12%)

Fig.4

53

國立成功大學九十七學年度碩士班招生考試試題

共5頁第3頁

系所:光電科學與工程研究所

科目:電子學

(簡命題老師勾選)

考試日期:0301, 節次:1

5. The OP amplifier in the circuit of Fig. 5 is ideal with output saturation levels of ±12V. The diodes exhibit a constant 0.7 V drop when conducting. Please find $v_{-} = V_{+}v_{A} = V_{-}v_{a} = V_{-}v_{$

6. At room temperature, it is required to find the incremental (i.e., small-signal) resistance of each of the diode-connected transistors shown in the Fig.6. assume that the dc bias current I=0.1mA. For the MOSFET, let $\mu_n C_{ox}=200~\mu A/V^2$ and W/L=10.

(a) $r = \Omega(b) r = \Omega(8\%)$

Fig.6

國立成功大學九十七學年度碩士班招生考試試題

共5頁第4頁

系所:光電科學與工程研究所

科目:電子學

本試題是否可以使用計算機: ②可使用

可使用 , 口不可使用

(請命題老師勾選)

考試日期:0301,節次:1

7. As shown in Fig.7, assume that the p-n and Zener diodes are ideal, and Vz = 5V, Find $V_2 = ___V$ and $V_3 = ___V$ when the voltage of V_1 is 16 V. (8%)

Fig.7

8. For the common-emitter amplifier shown in Fig.8, let V_{CC} =9V, R_1 =27 k Ω R_2 =15 k Ω , R_E =1.2k Ω and R_C =2.2k Ω . The transistor has β =100 and V_A =100V. (a)Calculate the dc bias current I_E (b)if the amplifier operates between a source for which

 $R_{sig}=10kW$ and a load of 2 k Ω , find the values of R_{in} , the voltage gain $A_{\nu}=\nu_{o}/\nu_{sig}$ and the current gain $A_{i}=i_{o}/i_{i}(20\%)$

Fig.8

53

國立成功大學九十七學年度碩士班招生考試試題

共
与
頁
・
第
5
頁

系所:光電科學與工程研究所

科目:電子學

本試題是否可以使用計算機: **回可使用** · □不可使用 (請命題老師勾選)

考試日期:0301,節次:1

9. The circuit in Fig. 9 utilizes an ideal OP amplifier.

- (a) Find I_1 , I_2 , I_3 and V_x .
- (b) If V_o is not to be lower than -13 V, find the maximum allowed value for R_L .
- (c) If R_L is varied in the range 100Ω to $1k\Omega$, what is the corresponding change in I_L and V_o ? (20%)

Fig. 9