編號:

47

國立成功大學九十七學年度碩士班招生考試試題

共 | 頁 第 | 頁

系所:數學系應用數學

科目:線性代數

本試題是否可以使用計算機: □可使用 · 凹不可使用 (請命題老師勾選)

考試日期:0301·節次:2

- [10%] 1. Let V be the vector space over the field $\mathbb R$ of real numbers consisting of all functions from $\mathbb R$ into $\mathbb R$. Let U be the subspace of even functions and W the subspace of odd functions. Show that $V = U \oplus W$.
- [10%] 2. Let V be a finite dimensional vector space and let W be a subspace. Show that dimension of the quotient space V/W is dim V dim W.
- [10%] 3. Let $A = (a_{ij})$ be a strictly upper triangular $n \times n$ matrix with real entries, i.e. $a_{ij} = 0$ if $i \ge j$. Let I be the $n \times n$ identity matrix. Show that I A is invertible and express the inverse of I A as a function of A.
- [10%] 4. Let A be square matrix over C. Prove that the eigenvalues of A are all real if $\bar{A}^t = A$ where \bar{A}^t means the conjugate transpose of A.
- [15%] 5. Let A and B be complex $n \times n$ matrices such that AB = BA. Show that there is a vector v such that $A\mathbf{v} = \lambda \mathbf{v}$ and $B\mathbf{v} = \mu \mathbf{v}$ for some $\lambda, \mu \in \mathbb{C}$. (That is, v is a common eigenvector of A and B.)
- [15%] 6. A linear transformation $T: V \to W$ is said to be independence preserving if T(I) is linearly independent in W whenever I is a linearly independent set in V. Show that T is independence preserving if and only if T is one-to-one.
- [15%] 7. Let $A = \begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & 0 & 0 \\ 0 & c & 3 & -2 \\ 0 & d & 2 & -1 \end{pmatrix}$. Determine conditions on a, b, c, and d so that there is only one Jordan block for each eigenvalue of A in the Jordan canonical form of A.
 - [15%] 8. Let $\{v_1, v_2, \ldots, v_k\}$ be a linearly independent set of vectors in the real inner product space V. Show that there exists a unique set $\{u_1, u_2, \ldots, u_k\}$ of vectors with the property that $(u_i, v_i) > 0$ for all i, and $\{u_1, u_2, \ldots, u_i\}$ is an orthonormal basis for Span $\{v_1, v_2, \ldots, v_i\}$ for every i.