編號:

239

國立成功大學九十七學年度碩士班招生考試試題

共 / 頁,第 /頁

系所:製造工程研究所丙組

科目:微積分

考試日期: 0301·節次:3

- 1. (20 pts). Let $\vec{a} = (1,1,0)$, $\vec{b} = (1,0,1)$ be 3×1 vectors in the Euclidean space. In addition, let \vec{c} be a 3×1 vector in the Euclidean space. Assume that \vec{a} , \vec{b} and \vec{c} has the following relationship: $\vec{c} \cdot (\vec{a} \times \vec{b}) = 0$. Give the solution set of \vec{c} . (Note: The solution set may contain one or more than one solutions of \vec{c} .)
- 2. (20 pts) The Euler formula: $e^{i\theta} = \cos\theta + i\sin\theta$.
 - (a) (10 pts) Apply the Euler formula to derive the following equality:

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

- (b) (10 pts) Apply the Euler formula to derive $d\cos\theta/d\theta$ and $d\sin\theta/d\theta$. Note: no credit will be given unless the Euler formula is applied in the derivation.
- 3. (20 pts) Find the following areas.
 - (b) (10 pts) Let A be the area of the region bounded above by y = x + 2 and below by $y = x^2$. Find A.

(a) (10 pts) Let
$$B = \int_{-1}^{1} \frac{1}{x^2} dx$$
. Give B .

- 4. (20 pts) Solve the following problems.
 - (a) (10 pts) Let $y = 1/\ln x$. Give dy/dx.

(b) (10 pts) Let
$$y = \int_{3}^{x^{2}+x} \frac{1}{t^{3}+1} dt$$
. Derive dy/dx

- 5. (20 pts) Evaluate the following limits:
 - (a) (5 pts) $\lim_{n\to\infty} (1+\frac{1}{c})^n = ?$, where c > 0.
 - (b) (5 pts) $\lim_{n\to\infty} (1+\frac{1}{n})^c =?$, where c>0.
 - (c) (10 pts) Is it true that $\lim_{n\to\infty} (1+\frac{1}{n})^n = 1$? Explain your answer.