240-1 編號:

國立成功大學九十七學年度碩士班招生考試試題 科目:工程數學

共/頁,第/頁

系所:製造工程研究所甲組

,一不可使用

(請命題老師勾選)

考試日期:0301 · 節次:3

Problem 1 (20 points)

本試題是否可以使用計算機:口句使用

Find the general solutions of the following equations:

(a)
$$y''' - 5y'' + 6y' = 8 + 2\sin x$$
; (b) $x^2y'' - xy' + y = x^3$.

(b)
$$x^2y'' - xy' + y = x^3$$

Problem 2 (15 points)

$$\begin{array}{c|c}
E_1 & E_2 \\
\hline
\downarrow_{i_1} & F_3 \\
\hline
\downarrow_{i_2} & F_3 \\
\hline
\downarrow_{i_3} & R_3
\end{array}$$

(a) Show that the system of equations for the currents i_1 , i_2 , and i_3 in the circuit shown above is

$$i_1 + i_2 + i_3 = 0,$$

 $-R_1i_1 + R_2i_2 = E_2 - E_1,$
 $-R_2i_2 + R_3i_3 = E_3 - E_2,$

where R_k and E_k , k = 1, 2, 3, are constants.

- (b) Express the system as a matrix equation AX = B, where $X = (i_1, i_2, i_3)^T$.
- (c) Show that the coefficient matrix A is nonsingular, and use $X = A^{-1}B$ to solve for the currents.

Problem 3 (15 points)

The temperature at a point (x, y) on a rectangular metal plate is given by $T(x, y) = 100 - 2x^2 - y^2$. Find the path a heat-seeking particle will take, starting at (3,4), as it moves in the direction in which the temperature increases most rapidly.

Problem 4 (20 points)

Use Laplace transform to solve

- (a) the initial-value problem: $y'' y' = e^t \cos t$, y(0) = 0, y'(0) = 0; and
- (b) the integrodifferential equation $f(t) + 2 \int_0^t f(\tau) \cos(t-\tau) d\tau = 4e^{-t} + \sin t$.

Problem 5 (20 points)

Poisson's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -h,$$

where the constant h > 0, occurs in many problems involving electric potential. Solve the above equation subject to the conditions

$$u(0,y) = 0, \quad u(\pi,y) = 1 \qquad (y > 0);$$

 $u(x,0) = 0 \qquad (0 < x < \pi).$

Problem 6 (10 points)

Evaluate the contour integral $\oint_C \operatorname{Re}(z) dz$, where C is the circle |z| = 1 (counterclockwise).