編號:

297

國立成功大學九十七學年度碩士班招生考試試題

共 > 頁 第/頁

系所:工業與資訊管理學系甲組

科目:作業研究

本試題是否可以使用計算機:

□可使用 · 凶不可使用

(請命題老師勾選)

考試日期: 0302·節次:2

- 1. Name five important persons and briefly describe their contributions in the development of mathematical programming. (15%)
- 2. For the following linear program with bounded variables, formulate its dual. max. c'x

s.t. $Ax \leq b$

 $l \le x \le u$

where A is a constant matrix, c, b, l, and u are constant column vectors, and x is a variable column vector. (15%)

3. For the following mathematical program:

max. $x_1 + 2x_2$

s.t. $x_1 + x_2 \le 4$ $3x_1 + 2x_2 - |2x_1 - x_2| \le 6$ $x_1, x_2 \ge 0$

- (a) Transform it into a conventional linear program which can be solved by LP computer packages. (10%)
- (b) Use any method to solve. (10%)

編號:

297

固立成功大學九十七學年度碩士班招生考試試題

共ン頂・第ン頁

系所:工業與資訊管理學系甲組

科目:作業研究

本試題是否可以使用計算機:□可使用,□不可使用(請命題老師勾選)

考試日期:0302 節次:2

- 4. (30%) Consider a workshop consisting of two machines. The potential jobs arrive in accordance with a Poisson process at rate 2, and that the service times for the two machines are independent and have respective exponential rates of 2 and 3. Suppose that an entering job first will processed on machine 1. When its work is completed on machine 1, it will go either machine 2 if that machine is idle or else wait in machine 1 until machine 2 becomes available. Suppose that a potential job will enter this workshop as long as machine 1 is idle.
 - (a) What proportion of potential jobs enters the workshop? (10%)
 - (b) What is the mean number of jobs in the workshop? (10%)
 - (c) What is the average amount of time that an entering job spends in the workshop? (15)
- 5. (10%) Trial are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; If the last two trials were fail, then the next trial is a success with probability 0.3; Otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are success?
- 6. (10%) Let p_{ij} 's be the one step transition probabilities of a Markov chain with M+1 states. If this Markov chain is irreducible, aperiodic, and

$$\sum_{i=0}^{M} p_{ij} = 1, \text{ for all } j.$$

Show that the limiting probabilities

$$\pi_j = \frac{1}{M+1}$$
, for $j = 0, 1, ..., M$.