國立交通大學97學年度碩士班考試入學試題

:線性代數(4032)

考試日期:97年3月9日第2節

所班別:應用數學系 組別:應數系甲組一般生

第一頁,共一頁

作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

In the following, $\mathbb R$ denotes the set of all real numbers, n is any positive integer and $\mathbb R^n$ is the Euclidean space containing all n-dimensional real column vectors. For $1 \le i \le n$, let e_i be a column vector whose transpose is equal to

$$(0,...,0,1,0,...,0)$$
.

The set $\{e_1, ..., e_n\}$ is known as the canonical basis for \mathbb{R}^n .

(12%) Which descriptions are correct and why? The solutions $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ of

$$Ax = \left[egin{array}{ccc} 1 & 1 & 2 \ 1 & 0 & 2 \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

form a plane, line, point, subspace, null space of A, column space of A.

2. Let F be a vector space of dimension n. Let T be a linear transformation on F. We call the matrix $B = (b_{i,j})_{1 \le i,j \le n}$ the matrix of T in the basis $\{v_1, ..., v_n\}$ if

$$Tv_j = \sum_{k=1}^n b_{k,j} v_k \quad \forall j = 1, 2, ..., n.$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$T\left(\left[egin{array}{c} a \ b \ c \end{array}
ight]
ight)=\left[egin{array}{c} 3c-b \ 3b-a \ a \end{array}
ight].$$

- (a) (6%) Verify that T is a linear transformation.
- (b) (7%) Find the matrix of T in the canonical basis of \mathbb{R}^3 .
- 3. Let $\{e_1, ..., e_n\}$ be the canonical basis of \mathbb{R}^n and $\{w_1, ..., w_n\}$ be another basis of \mathbb{R}^n . Let Cbe the matrix whose columns are $w_1, ..., w_n$. The matrix C is then called the matrix of the change of basis from $\{e_1, ..., e_n\}$ to $\{w_1, ..., w_n\}$.
 - (a) (7%) Prove that the matrix C is invertible.
 - (b) (7%) Let T be a linear transformation of \mathbb{R}^n and B be the matrix of T in the canonical basis. Regard B as a linear transformation of \mathbb{R}^n under the matrix multiplication. Then the matrix A of T in another basis $\{v_1,...,v_n\}$ of \mathbb{R}^n satisfies $A=D^{-1}BD$, where D is the matrix changing the basis from $\{e_1, ..., e_n\}$ to $\{v_1, ..., v_n\}$.
- 4. (a) (7%) Write the ellipsoid $\frac{x_1^2}{4} + \frac{x_2^2}{9} + \frac{x_3^2}{16} = 1$ in the form of $x^t A x = 1$, where $x^t = (x_1, x_2, x_3)$ is the transpose of x.
 - (b) (7%) State any three equivalent definitions of a real symmetric matrix A to be positive definite.
 - (c) (7%) Let $x \in \mathbb{R}^3$ and B be a 3×3 matrix with real entries. Give conditions on B so that $x^t B x = 1$ represents as an ellipsoid in \mathbb{R}^3 . Verify your claim.

國立交通大學97學年度碩士班考試入學試題

目:線性代數(4032)

考試日期:97年3月9日第2節

於班別:應用數學系 組別:應數系甲組一般生

第二頁,共二頁

*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

- 5. Let $T:\mathbb{R}^n\to\mathbb{R}^n$ be a linear transformation and A be the $n\times n$ matrix of T in the canonical basis of \mathbb{R}^n . Assume that T is a projection map, that is, $T^2 = T$.
 - (a) (5%) Prove that A has 1 as an eigenvalue with multiplicity at least dim R(T), where dim V is the dimension of V and R(T) is the range of T.
 - (b) (5%) Show that the eigenvalue of A is either 0 or 1.
 - (c) (5%) Prove that A is similar to a diagonal matrix whose entries are either 0 or 1. (Two matrices P,Q are said to be similar if there exists an invertible matrix X such that $Q = XPX^{-1}$.)
 - (d) (5%) Show that the trace of A (trA) satisfies $trA = \dim R(T)$.
 - (e) (5%) Prove that the similarity in (a) is orthogonal (that is, X is an orthogonal matrix) if and only if A is symmetric.
- 6. For any $n \times n$ matrix K, we let $K_{i,j}$ denote the (i,j)-th entry of K for $1 \leq i,j \leq n$. In this setting, K is called a stochastic matrix if

$$0 \leq K_{i,j} \leq 1, \quad \sum_{j=1}^{n} K_{i,j} = 1 \quad \forall 1 \leq i, j \leq n.$$

Assume in the following that K is a stochastic matrix.

- (a) (5%) Let $\rho(K)$ denote the spectrum of K, that is, the set of all eigenvalues of K. Prove that $|\lambda| \leq 1$ for all $\lambda \in \rho(K)$ and also $1 \in \rho(K)$.
- (b) (5%) Show that if v is an n-dimensional row vector such that vK = v, then |v|K = |v|, where $|v| = (|v_1|, ..., |v_n|)$ as $v = (v_1, ..., v_n)$.
- (c) (5%) K is said to be irreducible if, for any $1 \le i, j \le n$, there exists a positive integer $l = l_{i,j}$ such that the (i,j)-th entry of K^l , denoted by $(K^l)_{i,j}$, is positive, where K^l is the matrix obtained by multiplying K itself for l times. Prove that if K is irreducible, then 1 is a simple eigenvalue (that is, its multiplicity is one).