國立交通大學 97 學年度碩士班考試入學試題

目:工程數學(3031)

一般、在那

考試日期:97年3月8日第1節

所班別:機械工程學系 組別:機械系丙組

第 / 頁, 共 2 頁

可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

Evaluate the integral

$$\int_A x^2 dA$$
, $\int_A y^2 dA$ and $\int_A xy dA$

where A is the area of a right angle triangle as shown.

(16%)

The system of differential equations is given by

$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{cases} \ddot{y}_1 \\ \ddot{y}_2 \end{cases} + \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} y_1 \\ y_2 \end{cases} = \begin{cases} 0 \\ 3 \end{cases}$$

$$y_1(0) = 1$$
, $y_2(0) = -2$, $\dot{y}_1(0) = 2$, $\dot{y}_2(0) = 2$

where
$$y_i = y_i(t)$$
, $\dot{y}_i = \frac{dy_i}{dt}$, $\ddot{y}_i = \frac{d^2y_i}{dt^2}$, $i = 1, 2$.

Determine $y_i(t)$, i = 1, 2.

(17%)

(a). Consider the following one dimensional wave equation:

$$U_{tt} = c^2 U_{xx}$$

with boundary conditions: U(0, t) = 0, U(L, t) = 0 for all t and initial conditions: U(x, 0) = f(x), $U_t(x, 0) = 0.$

The subscript (•)_t denotes partial derivative and c is wave speed.

Show that the solution of the above problem can be expressed as

$$U(x, t) = [f(x + ct) + f(x - ct)]/2$$
 (10%)

(b). If $f(x) = \sin(x \pi/L)$ for $0 \le x \le L$, plot the diagrams of f(x + ct), f(x - ct), and U(x, t) at t =L/2c and L/c.

國立交通大學97學年度碩士班考試入學試題

目:工程數學(3031)

考試日期:97年3月8日第1節

所班別:機械工程學系 組別:機械系丙組

第 2 頁, 共 2 頁

【可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

Please find the centroid of a hemispherical volume $x^2 + y^2 + z^2 \le 1$, z > 0(17%)

Consider the differential equation

$$\frac{d^4y}{dx^4} + \alpha^2 \frac{d^2y}{dx^2} = 0,$$

0 < x < L, $\alpha > 0$

subject to boundary conditions

$$y = \frac{dy}{dx} = 0$$

at x=0,

$$y = \frac{d^2y}{dx^2} = 0$$

at x = L.

(a) Fine the general solution y(x).

(8%)

(b) Derive the characteristic equation in terms of α and L. Do not solve it.

(9%)

- The scalar function $\phi(x_1, x_2, x_3)$ is continuous, with continuous first partial derivatives in the interior V of smooth closed surface S. Let the unit vector $\mathbf{n} = n_1 \mathbf{e}_1 + n_2 \mathbf{e}_2 + n_3 \mathbf{e}_3$ be outward normal to S, in which e_1, e_2, e_3 are the base vectors of a Cartesian coordinate system.
 - (a) Show that

$$\int_{V}^{\infty} \frac{\partial \phi}{\partial x_{j}} dV = \int_{S}^{\infty} \phi \, n_{j} \, dS \,, \qquad j = 1, 2, 3 \,.$$

Note that it is not the Gauss theorem.

(b) Show that

$$\int_{S} x_{i} n_{j} dS = \begin{cases} \overline{V}, & i = j \\ 0, & i \neq j \end{cases}$$

where \overline{V} is the volume enclosed by surface S.