科目: 電子學(5001)

校系所組: 中大光電科學與工程學系、照明與顯示科技研究所 清大電機工程學系甲組、乙組、丙組、丁組 清大光電工程研究所、電子工程研究所、 清大工程與系統科學系丁組、動力機械工程學系乙組 陽明醫學工程研究所醫學電子組

1. Consider the common-emitter amplifier circuit of Fig. 1 with a supply voltage $V_{CC} = 10$ V. Assume that the BJT has $I_S = 10^{-15}$ A, $\beta = 100$, $C_{\mu} = 0.2$ pF, and $C_{\pi} = 1$ pF.

Fig. 1

- (a) Biasing the BJT with a dc collector current $I_C = 1 \text{mA}$, find dc voltage V_{BE} and R_C to provide a voltage gain $v_O / v_{be} = -100 \text{V/V}$ (5%).
- (b) Find the incremental (or small-signal) input resistance R_{in} and the input capacitance C_{in} of the amplifier. (5%)
- (c) With $R_{sig} = 1 \text{K}\Omega$, find the -3dB bandwidth f_H and unity-gain bandwidth f_T of v_O / v_{sig} . (5%)
- 2. The parameters of the circuit shown in Fig. 2 is listed below:

$$V_{th} = 1 \text{ V}, \ \mu_n C_{ox} = 100 \ \mu\text{A}, \ \lambda = 0, \text{ and } L1 = L2 = L3 = L4 = 1 \text{ um}$$
 $W1 = 8 \text{um}, \ W2 = W3 = W4 = 32 \text{um}$

- (a) Find the voltage values at nodes V1, V2, and V3. (Neglect the body effect and channel length modulation) (15%)
- (b) What operation regions are Q1 and Q3 in (cutoff, saturation or triode)? (5 %)

Fig. 2

注:背面有試題

科目: 電子學(5001)

校系所組:中大光電科學與工程學系、照明與顯示科技研究所

清大電機工程學系甲組、乙組、丙組、丁組

清大光電工程研究所、電子工程研究所、

清大工程與系統科學系丁組、動力機械工程學系乙組

陽明醫學工程研究所醫學電子組

3. Find the input impedance $Z_{in} = V/I$ of the op-amp circuit shown in Fig. 3. (15%)

Fig. 3

4. For the op-amp circuit shown in Fig. 4, if $v_1(0^+) = 5$ V and $v_2(0^+) = 0$ V, find v_0 for t > 0. Let $R_1 = 100$ K Ω , $R_2 = 200$ K Ω , $C_1 = 1\mu$ F, $C_2 = 0.5$ μ F. (15%)

Fig. 4

注:背面有試題

料目: 電子學(5001)

校系所組: 中大光電科學與工程學系、照明與顯示科技研究所 清大電機工程學系甲組、乙組、丙組、丁組 清大光電工程研究所、電子工程研究所、 清大工程與系統科學系丁組、動力機械工程學系乙組

陽明醫學工程研究所醫學電子組

5. Fig. 5 shows a popular configuration for a two-stage CMOS OP Amp. Assuming the transconductances of $Q_1...Q_8$ are $g_{m1}...g_{m8}$, the output resistances of $Q_1...Q_8$ are $r_{o1}...r_{o8}$, answer the following questions to analyze its operation and design its compensation network.

Fig. 5

- (a) Find out the overall DC voltage gain of the CMOS OP Amp. (5%).
- (b) Assume that the load capacitance C_L and C_C are much greater than the transistor capacitances. Then we can find the CMOS OP Amp to have two poles ω_{P1} , ω_{P2} and one zero ω_Z such as:

$$\omega_{P1} \cong \frac{1}{G_{m2}R_1R_2C_C} \qquad \omega_{P2} \cong \frac{G_{m2}}{C_L} \qquad \omega_{Z} = \frac{G_{m2}}{C_C}$$

where G_{m2} is the transconductance of the second stage, R_1 is the output resistance of the first stage, R_2 is the output resistance of the second stage. If we already know the unity gain frequency f_t , what is the <u>phase margin</u> of the Op Amp in terms of f_t , f_{P2} , f_Z . (5%)

- (c) The additional phase lag provided by the zero is unwanted. A simple and elegant solution is to include a resistance R in series with C_C , as shown in Fig. 5. If we want to place the zero at infinite frequency, how should we pick the value of resistance R_{∞} ? (5%)
- (d) Suppose student A selects $R = R_A > R_\infty$ and gets phase margin PM_A , student B selects $R = R_B < R_\infty$ and gets phase margin PM_B , student C selects $R = R_\infty$ and gets phase margin PM_C . Please compare their phase margins. (5%)

注:背面有試題

科目: 電子學(5001)

校系所組: 中大光電科學與工程學系、照明與顯示科技研究所 清大電機工程學系甲組、乙組、丙組、丁組 清大光電工程研究所、電子工程研究所、 清大工程與系統科學系丁組、動力機械工程學系乙組 陽明醫學工程研究所醫學電子組

- 6. The circuit shown in Fig. 6 (a) can be used as a memory element. The output voltage with only two possible states L^{+} and L^{-} is determined by the previous value of the trigger signal V_{in} , where $R_1 = 2 k\Omega$ and $R_2 = 10 k\Omega$:
 - (a) Assuming $L^+=12$ V and $L^-=-12$ V, determine the input threshold voltages V_{TH} and V_{TL} when the output state changes. (5%)
 - (b) By adding R₃ (2 kΩ) and V_{ref} (12 V), the circuit shown in Fig. 6 (b) becomes a comparator with hysteresis characteristics. Determine the threshold voltage V_{TH} and V_{TL}, and plot the transfer characteristic V_{in}/V_{out} of the circuit. (10%)

Fig. 6