科目: 工程數學 A(5002)

校系所組:中大光電科學與工程學系、照明與顯示科技研究所 清大電機工程學系甲組、光電工程研究所 <u>清大電子工程研究所、工程與系統科學系丁組</u> 清大動力機械工程學系乙組

陽明醫學工程研究所醫學電子組、

陽明生醫光電工程研究所理工組B

- 1. Consider the ODE $(3y^2 + x + 1)dx + 2y(x + 1)dy = 0$.
- (1) (4%) Find an integrating factor for the ODE.
- (2) (4%) Given y(0) = 1, solve the initial value problem.
- 2. Consider a mass-spring system governed by the ODE $y'' + 6y' + 18y = -90\sin(6t)$.
- (1) (3%) How would you describe this system (choose one below)?
 - (A) Undamped; (B) Underdamped; (C) Critical damped; (D) Overdamped.
- (2) (5%) Find the steady-state solution.
- 3. Consider the ODE $x^3y''' + 8x^2y'' + 9xy' 9y = 0$ for x > 0.
- (1) (5%) Find a basis of solutions $\{y_1(x), y_2(x), y_3(x)\}$ for the ODE.
- (2) (4%) Given initial conditions y(1) = 0, y'(1) = -2, and y''(1) = 2, solve the initial value problem.
- 4. (5%) Bessel function of the first kind of order ν , $J_{\nu}(x)$, is one solution of the Bessel equation,

 $x^2y'' + xy' + (x^2 - v^2)y = 0$. The general solution of the ODE, $x^2y'' + xy' + (4x^4 - \frac{1}{0})y = 0$, can be expressed as $y(x) = C_1 J_{\nu}(ax^2) + C_2 J_{-\nu}(ax^2)$. Determine the values of a and ν .

5. (10 %) Use Laplace transform to solve xy'' + (1-x)y' + ky = 0.

$$(A) y = \frac{e^{t}}{k!} \frac{d^{k}}{dt^{k}} [t^{k} e^{-t}] \quad (B) y = \frac{e^{t}}{k} \frac{d^{k}}{dt^{k}} [t^{k} e^{t}] \quad (C) y = \frac{e^{t}}{k} \frac{d^{k}}{dt^{k}} [t^{k} e^{-t}] \quad (D) y = \frac{e^{t}}{k!} \frac{d^{k}}{dt^{k}} [t^{-k} e^{-t}] \quad (E) y = \frac{e^{-t}}{k!} \frac{d^{k}}{dt^{k}} [t^{k} e^{-t}]$$

(F) $y = \frac{e^{-t}}{k} \frac{d^k}{dt^k} [t^k e^{-t}]$ (G) $y = \frac{e^k}{t!} \frac{d^k}{dt^k} [t^k e^{-t}]$ (H) none of the above

6. (10 %) Find the Fourier transform of $f(x) = \sqrt{\frac{\pi}{2}}$ if |x| < 2 and f(x) = 0 otherwise.

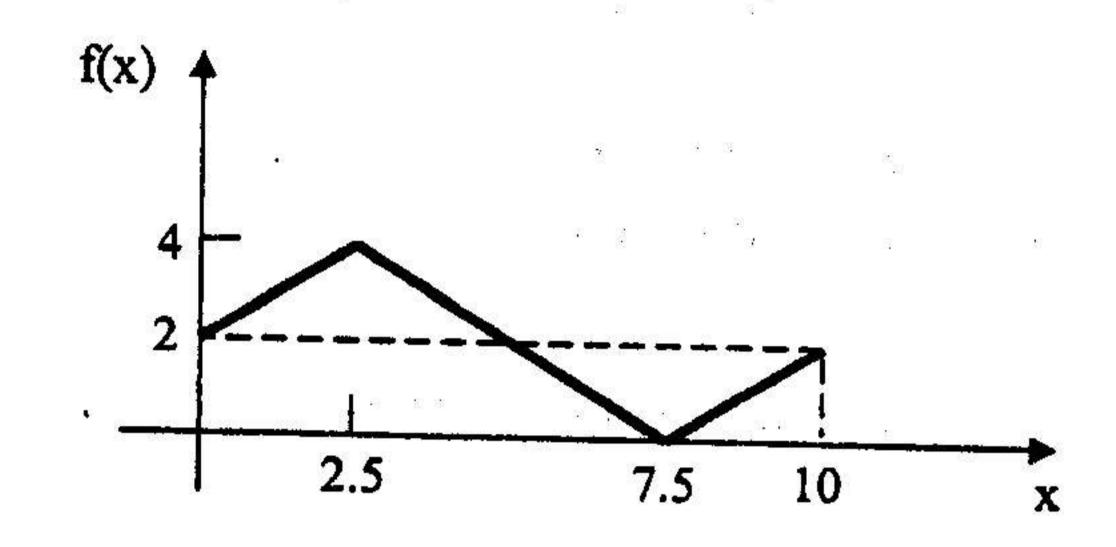
(A)
$$f(w) = \frac{\sin w}{w}$$
 (B) $f(w) = \frac{\sin w}{2w}$ (C) $f(w) = \frac{\cos w}{w}$ (D) $f(w) = \frac{\cos w}{2w}$

(A)
$$f(w) = \frac{\sin w}{w}$$
 (B) $f(w) = \frac{\sin w}{2w}$ (C) $f(w) = \frac{\cos w}{w}$ (D) $f(w) = \frac{\cos w}{2w}$
(E) $f(w) = \sqrt{\frac{\pi}{2}} \frac{\sin w}{w}$ (F) $f(w) = \sqrt{\frac{\pi}{2}} \frac{\sin w}{w}$ (G) $f(w) = \frac{\cos 2w}{w}$ (H) none of the above

台灣聯合大學系統97學年度碩士班考試命題紙

共2頁第2頁

7. Consider the problem


$$u_{tt} - 4u_{xx} = 0$$

$$u(0,t) = u(10,t) = 2$$

$$u(x,0)=f(x)$$

$$u_{\iota}(x,t=0)=0$$

f(x) is shown in the following figure.

- (1) (7%) What is u(2,1) (the value of u at position x = 2 when t = 1)?
- (B) 1.2 (C) 1.6 (D) 2 (E) 2.4 (F) 2.8 (G) 3.2
- (H) none of the above.
- (2) (6%) What is the lowest frequency (cycles per time) of the motion of u?
- (B) 0.1 (C) 0.2 (D) 0.4 (E) 0.8 (F) 1.6 (G) 3.2
- (H) none of the above.
- 8. (7%) The temperature distribution of a thin bar is described by a 1-D heat equation

$$u_{i}-4u_{xx}=0$$

The boundary and initial conditions are given as follows:

$$u(0,t)=u(10,t)=0$$

$$u(x,0) = \sin \frac{\pi x}{10}$$

The peak temperature is located at the position x = 5 at all time. At what time will the peak temperature reduce to 1/e of its initial value?

- (A) $\pi/10$ (B) $\pi^2/100$ (C) $10/\pi$ (D) $100/\pi^2$
- (E) $\pi/5$

- (F) $\pi^2/25$ (G) $5/\pi$
- (H) none of the above.
- 9. (20%) Evaluate the principal value of the integral $\int_{-\infty}^{\infty} \frac{\cos 3x}{x^3 + x^2 + 3x 5} dx$.
- 10. (10%) Find the eigenvalues and corresponding normalized eigenvectors (norm equals to 1) for the

matrix
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 6 & 4 & 2 \end{bmatrix}$$
. What are those for the transpose matrix A^{T} ?